Appendix D

Contents

Sample Engineering Notes and Computations

Sample D–1	Title page	D-2
Sample D–2	Engineering notes for pond dam design and construction layout survey—Sheet 1 of 6	D-5
Sample D–2	Engineering notes for pond dam design and construction layout survey—Sheet 2 of 6	D6
Sample D–2	Engineering notes for pond dam design and construction layout survey—Sheet 3 of 6	D-7
Sample D–2	Engineering notes for pond dam construction check survey—Sheet 4 of 6	D-8
Sample D–2	Engineering notes for pond dam construction check survey—Sheet 5 of 6	D-9
Sample D–2	Engineering notes for pond dam construction check survey—Sheet 6 of 6	D-10
Sample D–3	Engineering notes for pond dam and spillway— Design survey—Sheet 1 of 14	D-11
Sample D–3	Engineering notes for pond dam and spillway— Design survey—Sheet 2 of 14	D-12
Sample D–3	Engineering notes for pond dam and spillway— Design survey—Sheet 3 of 14	D-13
Sample D–3	Engineering notes for pond dam and spillway— Design survey—Sheet 4 of 14	D-14
Sample D–3	Engineering notes for pond dam and spillway— Design survey—Sheet 5 of 14	D-15
Sample D–3	Engineering notes for pond dam and spillway— Construction layout survey—Sheet 6 of 14	D-16
Sample D–3	Engineering notes for pond dam and spillway— Construction layout survey—Sheet 7 of 14	D-17
Sample D–3	Engineering notes for pond dam and spillway— Construction layout survey—Sheet 8 of 14	D-18
Sample D–3	Engineering notes for pond dam and spillway— Construction layout survey—Sheet 9 of 14	D-19
Sample D–3	Engineering notes for pond dam and spillway— Construction layout survey—Sheet 10 of 14	D-20

Part 645 National Engineering Handbook

Sample D–3	Engineering notes for pond dam and spillway— Construction check survey—Sheet 11 of 14	D-21
Sample D–3	Engineering notes for pond dam and spillway— Construction check survey—Sheet 12 of 14	D-22
Sample D–3	Engineering notes for pond dam and spillway— Construction check survey—Sheet 13 of 14	D-23
Sample D–3	Engineering notes for pond dam and spillway— Construction check survey—Sheet 14 of 14	D-24
Sample D–4	Engineering notes for a diversion—Sheet 1 of 3	D-25
Sample D–4	Engineering notes for a diversion—Sheet 2 of 3	D-26
Sample D–4	Engineering notes for a diversion—Sheet 3 of 3	D–27
Sample D–5	Engineering notes for terraces—Sheet 1 of 3	D-28
Sample D–5	Engineering notes for terraces—Sheet 2 of 3	D-29
Sample D–5	Engineering notes for terraces—Sheet 3 of 3	D-30
Sample D–6	Engineering notes for grassed waterway—Sheet 1 of 3	D-31
Sample D–6	Engineering notes for grassed waterway—Sheet 2 of 3	D-32
Sample D–6	Engineering notes for grassed waterway—Sheet 3 of 3	D-33
Sample D–7	Engineering notes for small drainage ditch—Sheet 1 of 3	D-34
Sample D–7	Engineering notes for small drainage ditch—Sheet 2 of 3	D-35
Sample D–7	Engineering notes for small drainage ditch—Sheet 3 of 3	D-36
Sample D–8	Engineering notes for surface drainage—Sheet 1 of 17	D-37
Sample D–8	Engineering notes for surface drainage—Sheet 2 of 17	D-38
Sample D–8	Engineering notes for surface drainage—Sheet 3 of 17	D-39
Sample D–8	Engineering notes for surface drainage—Sheet 4 of 17	D-40
Sample D–8	Engineering notes for surface drainage—Sheet 5 of 17	D-41
Sample D–8	Engineering notes for surface drainage—Sheet 6 of 17	D-42
Sample D–8	Engineering notes for surface drainage—Sheet 7 of 17	D-43
Sample D–8	Engineering notes for surface drainage—Sheet 8 of 17	D-44

Sample D-8	Engineering notes for surface drainage—Sheet 9 of 17	D-45
Sample D–8	Engineering notes for surface drainage—Sheet 10 of 17	D-46
Sample D–8	Engineering notes for surface drainage—Sheet 11 of 17	D-47
Sample D–8	Engineering notes for surface drainage—Sheet 12 of 17	D-48
Sample D–8	Engineering notes for surface drainage—Sheet 13 of 17	D-49
Sample D–8	Engineering notes for surface drainage—Sheet 14 of 17	D-50
Sample D–8	Engineering notes for surface drainage—Sheet 15 of 17	D-51
Sample D–8	Engineering notes for surface drainage—Sheet 16 of 17	D-52
Sample D–8	Engineering notes for surface drainage—Sheet 17 of 17	D-53
Sample D–9	Engineering notes for subsurface drain (main line) construction layout and construction check—Sheet 1 of	D–54 4
Sample D–9	Engineering notes for subsurface drain (main line) construction layout and construction check—Sheet 2 of	D–55 4
Sample D–9	Engineering notes for subsurface drain (main line) construction layout and construction check—Sheet 3 of	D-56 4
Sample D–9	Engineering notes for subsurface drain (main line) construction layout and construction check—Sheet 4 of	D-57 4
Sample D-10	Engineering notes for bench level survey—Sheet 1 of 5	D-58
Sample D–10	Engineering notes for bench level survey—Sheet 2 of 5	D-59
Sample D-10	Engineering notes for bench level survey—Sheet 3 of 5	D-60
Sample D-10	Engineering notes for bench level survey—Sheet 4 of 5	D-61
Sample D-10	Engineering notes for bench level survey—Sheet 5 of 5	D-62
Sample D-11	Engineering notes for route survey—Sheet 1 of 3	D-63
Sample D-11	Engineering notes for route survey—Sheet 2 of 3	D-64
Sample D-11	Engineering notes for route survey—Sheet 3 of 3	D-65
Sample D–12	Engineering notes for closed traverse—Sheet 1 of 3	D-66
Sample D-12	Engineering notes for closed traverse—Sheet 2 of 3	D-67
Sample D–12	Engineering notes for closed traverse—Sheet 3 of 3	D-68

Sample D–13	Engineering notes for topographic survey with transit— Sheet 1 of 2	D-69
Sample D–13	Engineering notes for topographic survey with transit—Sheet 2 of 2	D-70
Sample D–14	Plane surface design—Sheet 1 of 3	D-71
Sample D–14	Plane surface design—Sheet 2 of 3	D-72
Sample D–14	Plane surface design—Sheet 3 of 3	D-73
Sample D–15	Topographic map of dam site and spillway area	D-76
Sample D–16	Profile along centerline of dam	D-77
Sample D–17	Profile along centerline of auxiliary spillway	D-77
Sample D–18	Profile along centerline of principal spillway	D-78
Sample D–19	BM level circuit—Sheet 1 of 2	D-79
Sample D–19	BM level circuit—Sheet 2 of 2	D-80
Sample D–20	Embankment stakeout schedule—Sheet 1 of 2	D-81
Sample D–20	Embankment stakeout schedule—Sheet 2 of 2	D-82
Sample D–21	Principle spillway stakeout schedule	D-83
Sample D–22	Auxiliary spillway stakeout schedule—Sheet 1 of 2	D-84
Sample D–22	Auxiliary spillway stakeout schedule—Sheet 2 of 2	D-85
Sample D–23	Embankment stakeout notes—Sheet 1 of 2	D-86
Sample D–23	Embankment stakeout notes—Sheet 2 of 2	D-87
Sample D–24	Principle spillway pipe trench stakeout notes— Sheet 1 of 2	D-88
Sample D–24	Principle spillway pipe trench stakeout notes— Sheet 2 of 2	D-89
Sample D–25	Auxiliary spillway stakeout notes	D-90
Sample D–26	Plotted dam cross section	D-91
Sample D–27	Earthwork survey data and computation sheet	D-92
Sample D–28	Example for staking embankments	D-93

Part 645 National Engineering Handbook

Sample D–29	Example for staking excavations	D-94
Sample D–30	Example for marking construction stakes	D-95
Sample D–31	Example for staking single barrel culverts or conduits	D-96
Sample D–32	Example for staking multiple box conduits	D-97
Sample D–33	Example for staking cantilever abutments on skew angle	D-98
Sample D–34	Final dam checkout—sheet 1 of 2	D-99
Sample D–34	Final dam checkout—sheet 2 of 2	D-100
Sample D–35	Correction for curvature—sheet 1 of 7	D-101
Sample D–35	Correction for curvature—sheet 2 of 7	D-102
Sample D–35	Correction for curvature—sheet 3 of 7	D-103
Sample D–35	Correction for curvature—sheet 4 of 7	D-104
Sample D–35	Correction for curvature—sheet 5 of 7	D-105
Sample D–35	Correction for curvature—sheet 6 of 7	D-106
Sample D–35	Correction for curvature—sheet 7 of 7	D-107
Sample D–36	Field Notes Pile Driving Using Field Book—sheet 1 of 2	D-108
Sample D–36	Field Notes Pile Driving Using Field Book—sheet 2 of 2	D-109
Sample D-37 sheet 1 of 4	Field Notes Test Pile Driving/Loading Using Field Book—	D-110
Sample D-37 sheet 2 of 4	Field Notes Test Pile Driving/Loading Using Field Book—	D-111
Sample D-37 sheet 3 of 4	Field Notes Test Pile Driving/Loading Using Field Book—	D-112
Sample D 37	Field Notes Test Pile Driving/Leading Using Field Book	D_113

Sample D–37 Field Notes Test Pile Driving/Loading Using Field Book— D–113 sheet 4 of 4

Part 645 National Engineering Handbook

Appendix D

Sample Engineering Notes and Computations

Appendix D contains the format for engineering field notes and related field staking in the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). The instructions and sample notes represent the best practicable blending of the many existing note formats to fit the needs of the NRCS.

Engineering surveys, staking, notekeeping, calculations, and note interpretations are part of the daily activities of many NRCS personnel, as well as contractors, consultants, district employees, and others.

It is important, therefore, that these operations are performed with the greatest possible efficiency and in a manner that will result in maximum usefulness of the information obtained. This calls for uniformity in methods and procedures between States and between workstations within States.

General

Field notebooks and special forms

Bound and loose-leaf field notebooks are both satisfactory for most NRCS engineering surveys. However, the loose-leaf notebooks should not be used for project or other contract work where the notes might be used as evidence or supporting data in court actions. Looseleaf notes are not generally acceptable to the courts.

The use of special forms is recommended for recording engineering notes and design data for such practices as terraces, diversions, waterways, small pond dams, and similar work. It is extremely important, however, that the method be uniform and forms provide for at least the minimum construction check information shown in the sample notes.

Numbering, identifying, indexing, and filing

Numbering bound notebooks

Bound field notebooks should be numbered consecutively for each broad activity. Use one series of numbers for ordinary on-farm work (including cost-share programs) in each field office. The numbering may run consecutively from year to year or may start with number 1 at the beginning of each year. In the latter case, the year should precede the number such as 2010–1, 2010–2, etc.

Design and construction notebooks for project installation will be numbered in a separate series for each structure. Place the name of the project and the name (if there is one) and number of the structure site on each notebook. All notebooks used to record notes during the project planning stage may be numbered in one continuous series for the project area. A separate series of numbers will be used for each group project. Books containing notes of surveys made for other agencies should be numbered and identified as outlined for group or project type work. In all cases, the identifying name should be lettered with indelible ink or its equivalent.

Identifying notebooks

Identify all field notebooks, both bound and loose-leaf, so that they can be returned to proper headquarters if lost. Place this identification on the inside on the front cover or on the flyleaf of bound notebooks. For most loose-leaf notebook binders, it will be necessary to paste a white tab to the inside front cover.

The following identification should be used:

U.S. GOVERNMENT PROPERTY

Finder please return to

NATURAL RESOURCES CONSERVATION SERVICE

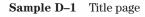
(Street or P.O. Box No.)

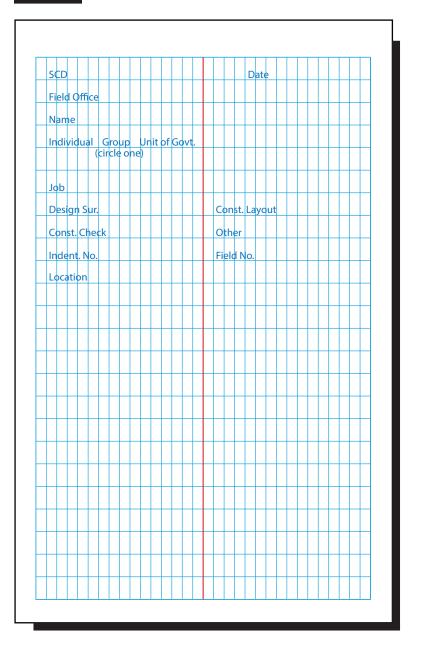
(City)

(State) (Zip)

Part 645 National Engineering Handbook

Indexing bound notebooks


The first 5 to 10 pages of each bound notebook should be reserved for indexing.


Note identification

Each set of notes should have a title page. Printed title pages are available for use in loose-leaf notebook binders (sample D–1). Rubber stamps may be obtained for stamping the title page in bound notebooks.

Bound notebooks

A single title page will suffice for all the surveys related to the same job if the notes are recorded on consecutive pages or clearly cross referenced by notations such as "continued on page ____" and "continued from page ____." If this is not feasible, use a separate title page for each set of notes.

Part 645 National Engineering Handbook

Show the following information on the first page of notes following the title page:

- page number
- names of party members and assignments
- purpose of survey (design, construction layout, construction check, etc.)
- date

Show only the page number on subsequent pages unless there is a change in purpose of survey, party members, or date. Stamps may be used for recurring titles and other information.

Loose-leaf notebooks

Use a separate title page for each set of loose-leaf notes (sample D–1).

Show the following information on the right-hand face of the first page of notes following the title page:

- page number
- individual, group, or project name (may be abbreviated)
- practice or construction item (abbreviated if feasible)
- purpose of survey (design, construction layout, etc.)
- party members and their assignments
- date

Show the same information on the succeeding pages, except for party members and date, which need not be listed unless they change.

Filing notes

File all field notes in the office responsible for followup on the job. Fasten each set of loose-leaf notes together and file in the plan folder or appropriate job file or folder. A large envelope stapled inside the folder makes a good repository.

Recording survey data

Record all numbers, figures, and explanatory notes clearly and legibly. Use pencils of a hardness equal to or exceeding No. 2–H. Do not erase numbers. If an error is made in recording a number, a line should be drawn through it and the correct number written above. The recorded data should give a true picture of the precision of the survey. The decimal point should never be omitted when recording decimals. If measurements are made to the nearest 0.01 foot, 2 digits should always be recorded to the right of the decimal point even though the last one, or last two, may be zeros, for example 2.10 or 4.00.

The sample notes illustrate the precision required for ordinary NRCS engineering surveys. A higher degree of precision may be required for project type work or special or unique jobs. The work outline for surveys should specify the degree of precision required. The National Engineering Handbook (NEH), Part 650, Engineering Field Handbook (EFH), Chapter 1, Engineering Surveys, describes survey precision and accuracy.

Sketches

Sketches are an important part of survey notes and should be made for all types of surveys. Sketches are of two general types: those used on the title page for general location of the job and those used in the body of the notes to show data that cannot be readily shown in other ways. Normally, sketches are not drawn to scale, but are proportioned by eye.

Stationing

Normally the starting station for survey of streams, waterways, canals, ditches, and gullies is located at the upstream end and proceeds in the direction of flow. Stationing should be compatible with computer use. In some cases, however, the survey can be accomplished with less time and effort and be related better with subsequent sections of the job by locating the starting point at the downstream end. This is especially true of drainage surveys.

Positive stationing is always preferable. Negative stationing tends to be confusing and can cause errors. When the extent of the survey is not known at the beginning, a station value sufficiently greater than 0+00 should be assigned to the starting station to ensure all stationing will be positive.

Part 645 National Engineering Handbook

Left and right designations

Banks of streams are normally designated left and right facing downstream. Cross sections, slope stakes, and notes are directed left and right as viewed in the direction of increasing stations.

Grade rod

The notes for construction layout and check surveys illustrate the use of the grade rod. The grade rod is a time saver and has wide application in NRCS work. It eliminates the need for converting rod readings to elevations and facilitates computations since they may be made directly from the field notes. This eliminates copying time, reduces the time for checking, and the chance for errors.

The grade rod is obtained by subtracting the planned elevation at each station from the height of instrument (grade rod = H.I. – planned elev.). When the height of instrument is above the planned elevation, the grade rod has a plus value and is so marked in the notes, such as +5.2. If the height of instrument is below planned elevation, the grade rod has a minus value and is so marked, such as -8.3.

To find the cut or fill in construction layout surveys, subtract the actual rod reading from the grade rod. If the result has a minus value, a fill is indicated. If the result has a plus value, it indicates a cut.

Example A:

H.I. = 249.3 Planned elev. = 243.0 Grade rod = 249.3 - 243.0 = +6.3Foresight = 9.8 +6.3 - 9.8 = -3.5 a fill

Example B: H.I. = 127.4Planned elev. = 132.6Grade rod = 127.4 - 132.6 = -5.2Foresight = 4.2-5.2 - 4.2 = -9.4 a fill *Example C:* H.I. = 134.6 Planned elev. = 128.4 Grade rod = 134.6 - 128.4 = +6.2

Foresight = 2.9

+6.2 - 2.9 = +3.3 a cut

In construction check surveys, the grade rod for each station is computed as explained. The foresight at each station is mentally compared with the grade rod for that station. Thus, the work can be checked rapidly without the necessity of converting rod readings to elevations.

Standard note samples for ordinary onfarm work

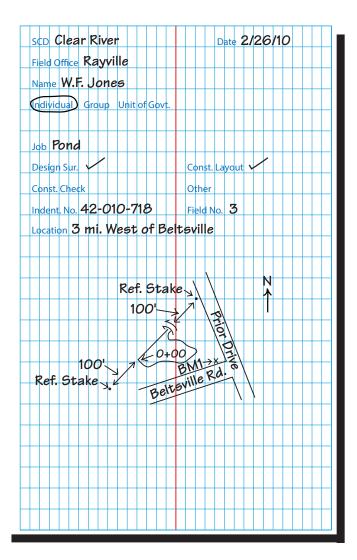
The following sample notes illustrate the format for several types of surveys used for ordinary on-farm activities. The intent of these samples is to illustrate notekeeping methods, format, identification, content, and completeness.

In a limited number of instances, the sample notes include design information for the simpler projects. These design data were used only for illustration and do not establish design criteria.

Each set of notes is preceded by explanatory statements that should be studied carefully.

Part 645 National Engineering Handbook

Sample D-2 Engineering notes for pond dam design and construction layout survey—Sheet 1 of 6


Engineering notes for pond dam design and construction layout survey

These notes are for a small pond dam that was designed and staked for construction during one trip to the field. The design survey and the construction layout survey were combined in one operation.

A reference hub was set at spillway elevation, and the following information was given to the landowner for use by him and the contractor:

- 1. Total fill height (design height plus allowance for settlement) at each station as measured from the reference hub.
- 2. Spillway dimensions and its elevation in relation to the reference hub.
- 3. Top width of fill.
- 4. Side slopes of fill.
- 5. Standard specifications for site preparation and placement of fill.

Soil investigations and fill volume computations were made and recorded in accordance with State NRCS procedures.

Part 645 National Engineering Handbook

Right (upstream) 3:1

F=0.0 0.8 4.0

F=4.2 <u>5.0</u> 16.6

F=8.2 <u>9.0</u> 28.6

F=7.2 <u>8.0</u> 25.6 F=2.4 <u>3.2</u> 11.2

F=1.0 1.8 7.0

2-26-10

Sample D–2 Engineering notes for pond dam design and construction layout survey-Sheet 2 of 6

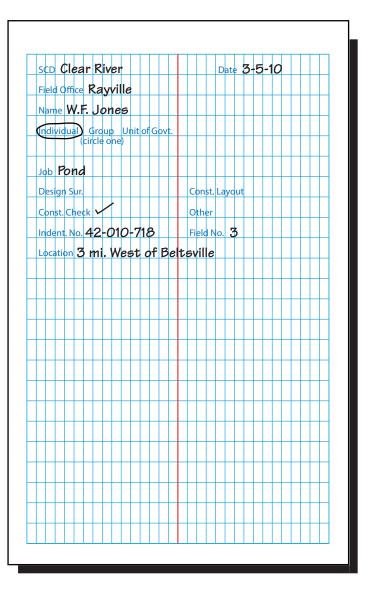
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Settlement =10% € H.				Design Data
					£	D.A.	8.0 a	c. Q=18 (I	ES-1027)
						Elev.	topa	am = 102.	0 top widt 'x 2.0 2:1
						Add	1 <i>0%</i>	to CH for	settlement
								Left	Q
							(dow	nstream)	뽀
							-	2:1	
B 14	2 8 0	102.80		100.00		20 ^d	nail i	n root of 1	2" maple ir
BM1	2.80	102.80		100.00					end of dam
						F	= <u>0.0</u>		F=0.0
0+0			+0.8	102.0			<u>0.8</u> 4.0		<u>0.8</u> 0.0
						F	=5.6		F=5.0
0+85			+0.8	102.0	0.5		6.4 15.2		5.8 0.0
1+0			+0.8	102.0	0.9	F	=9.2		F=9.1
							<u>10.0</u> 22.4	i	<u>9.9</u> 0.0
1+35			+0.8	102.0	0.8	F	=8.8		F=7.9
1+35			+0.0	102.0	0.0		<u>9.6</u> 21.6		<u>8.7</u> 0.0
						E	=4.8		0.0 F=4.7
2+00			+0.8	102.0	0.5		5.6		5.5 0.0
							13.6	}	
2+45			+0.8	102.0	0.2	F	=3.3 4.1		F=2.0 <u>2.8</u>
							4.1		<u>2.p</u> 0.0

Part 645 National Engineering Handbook

Sample D-2 Engineering notes for pond dam design and construction layout survey—Sheet 3 of 6

Sta.	B.S.	Н.І.	F.S. or Grade Rod	Elev. or Planned Elev.	Settlement =10% @ H.
		102.80			-
2+50	End fill		0.8	102.0	0.0
2+61	Spillway	Q	2.8	100.0	
	Slop	pe Stake:	∍-Spillwa	У	
0+00			2.8	100.0	
0+12			2.8	100.0	<u>(</u> Dam Sta. 2+6 @ 90°
0+25			2.8	100.0	@ 90
0+20			2.0	100.0	
TBM1			2.81	99.99	ОК

Design	& Const. La	yout		2
	Left	Œ	Right	
	F=0.0	F=0.0	F=0.0	
	<u>0.8</u> 4.0	F=0.0 <u>0.8</u> 0.0	<u>0.8</u> 4.0	
		F=2.3 0.5_ 0.0		
		0.0		
	Left 2:1	<u> </u>	Right 2:1	
	C 00	¢=0.0	¢=0.0	
	C=0.0 2.8 5.0	<u>2.8</u> 0.0	2.8 5.0	
	5.0	0.0	5.0	
	C=2.2	C=2.3	C=2.5 0.3	
	C=2.2 0.6 9.4	C=2.3 	<u>0.3</u> 10.0	
	C=0.0 <u>2.8</u> 5.0	C=0.0 <u>2.8</u> 0.0	C=0.1 <u>2.7</u> 5.2	
	5.0	0.0	5.2	
(59	iliway stati	oning increas	ses downstrea	m)
++++	+++++			
++++				


Part 645 National Engineering Handbook

Sample D-2 Engineering notes for pond dam construction check survey—Sheet 4 of 6

To expedite the construction check survey, the following information was taken from the plans and listed in the field notebook where it would be convenient for reference. This was done before any survey work was started.

Sta	Planned elev.	Planned elev. + 10% of £ height
0 + 00	102.0	
0 + 85	102.0	102.5
1 + 35	102.0	102.8
2 + 00	102.0	102.5
2 + 45	102.0	102.2
2 + 50	102.0	
2 + 51.6	102.2	
2 + 56	100.0	
2 + 61	100.0	
2 + 66	100.0	
2 + 71	102.5	

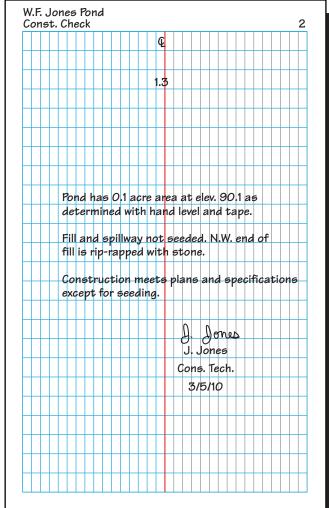
The constructed fill was uniform in appearance; therefore, only one cross section was taken.

Part 645 National Engineering Handbook

⊼ J. Jones Ø K. Hill

3-5-10

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Planned Elev. + 10% Ç H.
					<u> </u>
BM1	3.81	103.81		100.00	

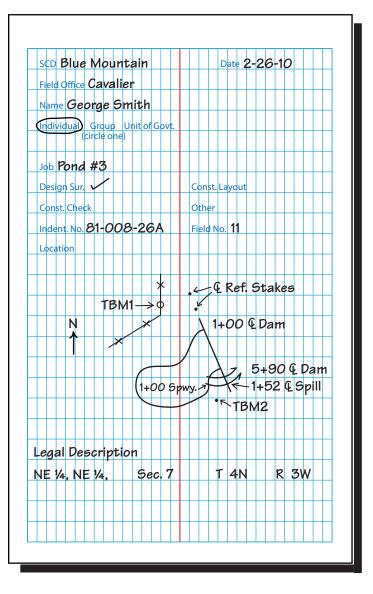

Engineering notes for pond dam construction check survey—Sheet 5 of 6 Sample D–2

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Planned Elev. + 10% & H.		L	eft			¢		Rie	ght		
					-	(2	down	stre 2.1	am	ו			upst 3	ream :1	ו	
BM1	3.81	103.81		100.00												
0+00			+1.8		102.0						1.8					
0+85			+1.3		102.5						1.2					
1+35			+1.0		102.8	9.8	<u>9.</u> 20.	<u>5</u> 6	5.4	0.9	0.9	1.0	4.2	8.0	3	9.
2+00			+1.3		102.5	25.0	20.	O 1₄	1.0	4.0	1.2	4.0	13.0) 25.	03	50
2+45			+1.6		102.2						1.4					
2+50	End Fill		+1.8		102.0						1.7					
2+52	Edge Sp Cut	illway	+1.6	102.2												
2+57	Bottom	Spillway	+3.8	100.0							1.6					
2+62	€ Spillwa	ay	+3.8	100.0							3.8					
2+67	Bottom	Spillway	+3.8	100.0							3.9					
											3.8					

Part 645 National Engineering Handbook

Sample D-2 Engineering notes for pond dam construction check survey—Sheet 6 of 6

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.			
		103.81					
2+72	Edge Spi Cut	llway	+1.3	102.5			
TP	3.87	104.42	3.26	100.55			
BM1			4.42	100.00		_	
	7.68		7.68	ОК		_	H
							Ħ
						_	
						_	
NIa	ote: Norm		a dinac a	no cuffic	out	_	
INC	for ch	eckout, b	ut comp	ex or lard	e dams	_	
		equire a p				_	
	_					_	
	_					-	
	_					-	


Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Design survey—Sheet 1 of 14

Engineering notes for pond dam and spillway design survey

These notes illustrate a job where the design survey was made by a survey party, and the plans and specifications prepared from the notes by an engineer.

Soil investigations and hydrologic studies were made and recorded in accordance with NRCS standards and procedures for the State.

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Design survey—Sheet 2 of 14

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.
BM1	6.71	106.71		100.00
DINI	0.71	106.71		100.00
+00				
2+00				
100				
2+39				
TPI	1.32	96.17	11.86	94.85
		(96.2)		
2+83				
7.00				
3+00				
3+35				
4+00				
TRO	44.00	400.40	458	04.64
TP2	11.82	106.46 (106.5)	1.53	94.64
		(100.0)		
4+69				

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Design survey—Sheet 3 of 14

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		106.46			
5+00		(106.5)			
5+27					
5+50					
TP3	5.73	110.87 (110.9)	1.32	105.14	
5+65		(110.9)			
5+72					
5+90					
6+00					
6+50					
BM2	0.33	110.34	0.86	110.01	

	Left		G	Right	
	2010				
96.3 10.2	96.8 9.7	100.1	97.4 9.1	95.4 98.1 11.1 8.4	99.3 7.2 50
35	25	6.4 10.0	0	15 35	50
	100.4	101.0	101.3	101.5 101.9	
	<u>6.1</u> 25	<u>5.5</u> 15	<u>5.2</u> 0	<u>5.0</u> <u>4.6</u> 20 <u>35</u>	
	104.7	104.8	105.0	105.1 105.4	
	<u>1.8</u> 25	<u>1.7</u> 15	<u>1.5</u> 0		
			106.4		
			4.5		
			104.6		
			6.3		
			0 105.2		
			5.7		
			0		
			105.9 5.0		
			0		
			109.2 1.7		
			0		
Spike	in base	oflone	elm.		

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Design survey—Sheet 4 of 14

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		110.34			
TP1	4.87	105.00	10.21	100.13	
1+00	Startin	g sta.			
TP2	9.60	110.95	3.65	101.35	
1+40		(110.9)			
1+52=8	6ta. 5+90	€ Dam			
2+00					
TP3	0.84	100.56	11.23	99.72	
2+40		(100.6)			
2+56					
2+50					
TP4	1.76	92.18	10.14	90.42	

	Left		q	Rig	ht	
		98.6	98.5	98.7		
		6.4 30	98.5 6.5	<u>6.3</u> 25		
		30	0	25		
08.9 2.0	108.6 2.3	105.0 5.9	104.0 6.9	104.7 6.2	105.2 5.7	
35	15	9.0	-0.0	9	31	
	106.4	104.5	105.2		07.8	
	<u>4.5</u> 25	<u>6.4</u> 18	5.7	<u>5.0</u> 10	<u>3.1</u> 25	
		1-	100 7			
	103.6 7.3	101.6 9.3	100.3 10.6	101.0 9.9	103.9 7.0	
	30	12	0	15	30	
	96.5	95.4	94.4	95.2	96.3	
	4.1	<u>5.2</u> 20	6.2	5.4	4.3	
	30		0	20	30	
	94.4	93.2	92.9 7.7	93.1	94.2	
	<u>6.2</u> 32	<u>7.4</u> 15		<u>7.5</u> 15	<u>6.4</u> 30	
+						

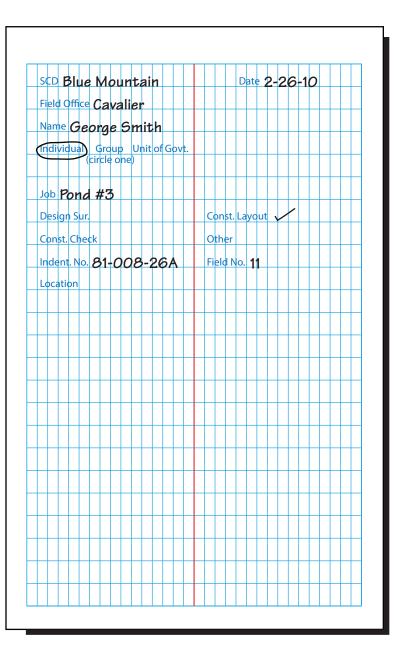
Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Design survey—Sheet 5 of 14

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		92.18			
3+00		(92.2)			
3+42					
TP5	11.48	102.49	1.17	91.01	
BM1	54.46		2.51 54.48	99.98	
		elev. BM1			
		Diff		.02	ОК
	Adjust	elve. BM2	=.01	110.00	Adjusted
				J.	Doe

Left		¢	Right	
90.2	89.5	88.8	89.6 90.0	
90.2 <u>2.0</u> 30	<u>2.7</u> 18	88.8 <u>3.4</u> 0	89.6 90.0 <u>2.6 2.2</u> 20 35	
30	85.5		85.3	
	<u>6.7</u> 32	85.0 7.2 0	<u>6.9</u> 30	
	52	Ψ		

Part 645 National Engineering Handbook


Sample D-3 Engineering notes for pond dam and spillway—Construction layout survey—Sheet 6 of 14

Engineering notes for pond dam and spillway construction layout

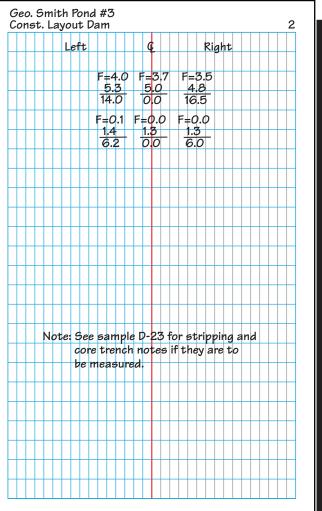
To expedite the construction layout survey, the following information was taken from the plans and listed in the field notebook. This information is also useful in construction check survey.

- 1. Planned elevation of top of embankment at each station and the allowance for settlement. In this example, settled heights are shown.
- 2. Planned top width of embankment.
- 3. Planned elevation of bottom of excavation for the conduit at upper end, lower end, and intermediate points.
- 4. Planned elevation of auxiliary spillway at several points.
- 5. Dimensions of auxiliary spillway.

After the job was staked, a reference hub was set at auxiliary spillway crest elevation so the contractor could make preliminary checks for completion before calling on the NRCS for final check-out.

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Construction layout survey—Sheet 7 of 14


Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Settlement =0.5x € H.
BM1	7.42	107.42		100.00	
2+05	N.W. e	nd dam	+2.4	105.0	0.0
2+39			+2.4	105.0	0.5
TP1	0.15	95.31	12.26	95.16	
2+83			-9.7	105.0	0.6
3+00			-9.7	105.0	0.9
3+35			-9.7	105.0	1.0
TP2	11.88	106.32	0.87	94.44	
4+00			+1.3	105.0	0.5
4+69			+1.3	105.0	0.5

				1	e	F+	2	.1						1	î					Ri	~	a +	-	×.1						
t	+	+				-	-		_	_			5			т					-			/.1						
								-									p													
1	9	te	eı	a	XIE	8 I	n	те	n	ce	3	n	e :	20		,	N.	w	. (21	N	1.1	۷.	е	na	30	στ	a	a	m
).(þ	F	=	0	.0		F		0										
											4 0	-		2	.4 .C	ŀ		+		.4 .0										
								;			b.'				.c 9.				-	.о Э.										
T	T	T							1:	2.	5		•	12	.2	š			9	.2 5.4										
t	+	┢							2	6	.2			0	.С			-2	26	5.4	1									
+	+	┢																			_									\square
╀	+	╞							-	41	z	z		-	11	5		-		10	6									
								1		וי 3.	р. 6	2	1		11 .8			r	= 0	.8	.: }	,								
									3	2	.6	Ī			.C					7.5										
								F	=	18	3.8	3	F	=1	7.	0				6										
t	1	T). স	1 .6	-			3 .C			Ē	6	.5 ŀ.@	2									
+	+	┢						E	-	-	-	-	-	-)	-	-		_									\square
+	+	+						г	= 1	20 1.().)	/		10	.2	.u 5			9	.9	0									
									4	7.	4				.С					1.8										
													_								_									
T	T	T							F: 1	=1 2	1.2 5	2			1C 2.0		^	F	=	8	3									
┢	+	+							2	8	.4	-	-	0	.0	ŕ		5	30	.e	5									
┝	+	+						1	F=	.0	0.2		F	=	9.	0		F	_/	в.	7									
									1(þ.	5		•	10	.3	5		1	0	.0)									
									2	4	.4			0	.С)		1	31	2.										
t																														

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Construction layout survey—Sheet 8 of 14

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Settlement =5% © H.
		106.32			
5+27			+1.3	105.0	0.2
5+50	S.E. end	ldam	+1.3	105.0	0.0
BM1			6.31	100.01	
	19.45		19.44		
	Correc	t elev. Ti	3M1=	100.00	
			Diff=	0.01	ОК

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Construction layout survey—Sheet 9 of 14

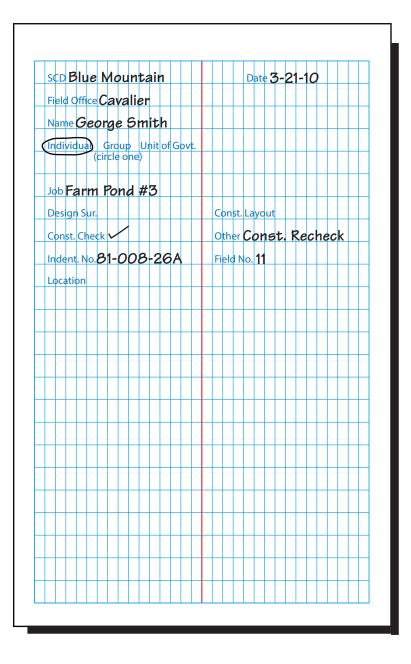
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM1	0.18	100.18		100.00	
TP1	1.24	89.70	11.72	88.46	
0+00	At riser		+4.2	85.5	
0+23	€ Dam		+4.0	85.7	
0+48			+4.3	85.4	
0+75			+4.7	85.0	
TP2	11.87	101.10	0.47	89.23	
BM1			1.09	100.01	
	13.29 Corre	ct elev. B	13.28 M1=	100.00	
			Diff=	0.01	ОК

ri	ns nia	ça	Ē	ŝ	2N	/y.	E	x	ca	v.	_				_				_						_	_	_	_	3
						ef								q						1	Zi ę	gh	t						
:	5e	e	p	a	1e	1																							
((P	ip	e	at	• •	ig	h	ti	ar	ıg	le	t	0	Ę	Di	ar	n	st	a	. 3	5+	0	0)					
	\vdash												()= 3	1.	2									+	+		+	t
	\vdash													3	.0	-	_		_	_		-	-	+	+	+	+	+	+
															Þ				_					_			_		
													С	=2 1.	2.:	3													
													-	۱. (5	-													
													С	-2	2.8	3													
	T													=2 1.! - (Б														
																													t
	\vdash												C	=2 2.	r: h	/			_	_		-	-	+	+	+	+	+	+
	-												-		ř	-			_			_	_	+	+	+	+	+	+
	\vdash																		_	_		-	+	+	+	+	+	+	+
	\vdash																		_	_	_	-	-	+	+	+	+	+	+
																			_										
	\vdash																						1						
	\vdash			-	-														_				+	+	+	+	+	+	

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Construction layout survey—Sheet 10 of 14

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM2	1.02	111.02		110.00	
TP1	4.02	107.54 (107.5)	7.50	103.52	
I+05	Starting	sta.	+8.4	99.1	
1+40			+7.1	100.4	
1+52			+7.1	100.4	
2+00			+10.5	97.0	
TP2	3.92	100.60	10.86	96.68	
2+56			+7.7	92.9	
TP3	11.03	111.01	0.62	99.98	
BM2	19.99		1.03 20.01	109.98	
	Correc	t elev. B	M2=	110.00	
			Diff=	0.02	ОК


Geo Cor Aux). 19 Vili	S t. ia	m L rv	it av	h /C	Pa our ww	on t v.	d	#	3																	4	
			Ű																									
+	_	_			L	.ef				_	_		_	q	r							gł	ΙL				-	
							\$	эp	ik	е	in	b	a	66	2	þf	lo	n	e i	elı	11							
								Ē	30	tl	:0	m	V	vic	lt	h	=	2	0.	0	1							
-	_	_								S	id	е	sl	0	þe	5	=	2	:1								-	
									<u>_</u> _	- ().1		C	=	h	h		0		0	0							
+									8	5.7	3		Ŭ	8				C		.4								
									10).(2		-	(F			ĪĊ).(5							
									_				<u> </u>	-	Į,			~		4.:	z							
+						t			= 2					-3 3.	E	2		6	2	ŧ 8	9							
+						+			19).2	ŀ		-	0	F	+		H	8	.6	5							
								C	=: 1.	р. С	5		5	=4 2.	•.č	P		C	=	5.	1							
┢						-	\vdash		1. 21	0)		-	<u>د</u>	۲	-		-	2.	0	-						-	
													~			_												
								С	≡' 5	4. a	6		C:	=3 7.1	þ.,	P		C	=' 6	1.0 5	P							
+									19				-	/ (5	-		1	8	.0	5						-	
														Ŭ					Ű									
-																												
_								С	=(0.	0		C:	=0	2.0	Р				0.							_	
									7				-	7.' (Ľ	F				6								
\top									10		,			C	ľ				Ю	.2								
+						1																						
1																												
-							-	\square						\vdash					_									
+				-		╞	-	\square					-	\vdash	-						_						-	
+						╞	-	\square					-															

Part 645 National Engineering Handbook

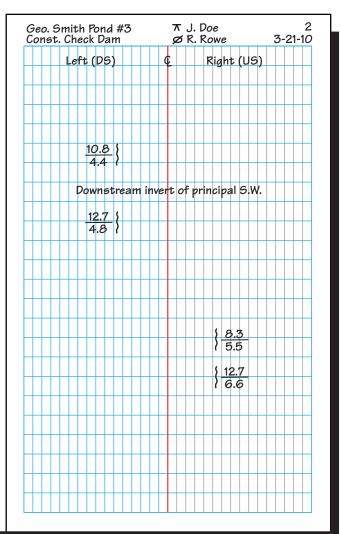
Sample D-3 Engineering notes for pond dam and spillway—Construction check survey—Sheet 11 of 14

Engineering notes for pond dam and spillway construction check survey

These notes illustrate the standard NRCS format for a fill that is too high to be checked from one instrument setup. To expedite the construction, check survey necessary dimensions, stations, and elevations are taken from the plans and entered in the field notebook for ready reference.

Part 645 National Engineering Handbook

Sample D-3 Engineering notes for pond dam and spillway—Construction check survey—Sheet 12 of 14


Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Planned +5% & H.
	l	Ipper por	tion of da	am	
BM1	7.51	107.51		100.00	
2+05			+2.5		105.0
2+39			+2.0		105.5
2+83			+1.8		105.7
3+00			+1.5		106.0
3+35			+1.5		106.0
Side shot	;		10.1	97.4	
4+00			+2.0		105.5
4+69			+2.0		105.5
5+27			+2.3		105.2
5+50			+2.5		105.0

Geo. Smit Const. Ch				I. Doe R. Rowe	1 3-21-10
Le	ft (DS)		¢	Right (U	<i>s</i>)
1" Steel a:	xle in fer	ıce line	200' N	I.W. of N.W.	end of dam
			2.4		
	<u>12.6</u> 26	<u>1.9</u> 6	1.8	<u>2.0</u> 8.6 625	
			1.7		
	<u>{ 11.7</u> 26	1.3 6	1.4	1.4 11.6 6 35	
	(<u>11.8</u> 26	<u>1.3</u> 6	1.3	<u>1.4 11.7</u> 6 35	-
	Cru	est of F	rincipa	II Spillay	
	<u>11.9</u> 25	2.0 5	1.9	2.0 10.7 7 31	
			2.1		
	<u>6.3</u> 14	2.2	2.1	<u>2.0</u> 5.4 6 17	
			2.4		

Part 645 National Engineering Handbook

Sample D–3 Engineering notes for pond dam and spillway—Construction check survey—Sheet 13 of 14

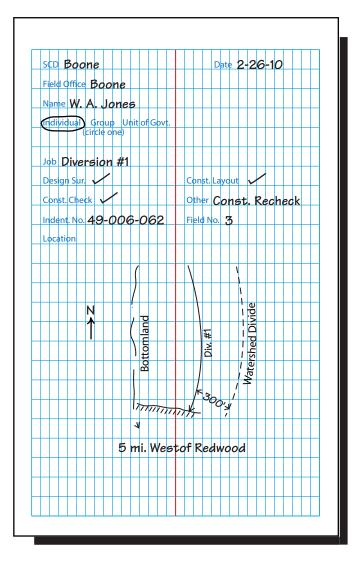
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
	Lower po	rtion of	dam-dow	nstream	
		107.51			
TP1	1.21	97.01	11.71	95.80	
3+00					
Side shot			12.0	85.0	
3+35					
	Lower	ortion o	f dam up	stream	
TP2	11.66	107.59	1.08	95.93	
TP3	1.29	97.10	11.78	95.81	
3+00					
3+35					
TP4	11.31	107.31	1.10	96.00	
BM1			7.29	100.02	
	37.10		<u>7.29</u> 37.08		
	Correct	elev. BM1:	=100.00		
		Diff.	Ļ	0.02	ОК

Part 645 National Engineering Handbook

Sample D–3	Engineering notes for pond dam and spillway—Construction check survey—Sheet 14 of 14

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM2	0.80	110.80		110.00	
TP1	2.02	101.11	11.71	99.09	
1+80			+2.7	98.4	
2+00			+4.1	97.0	
2+20			+5.6	95.5	
TP2	11.80	111.80	1.11	100.00	
BM2	14.62		1.79 14.61	110.01	
	14.02		14.01		
	Corre	ct elev. T	BM2=	110.00	
			Diff=	0.01	ОК

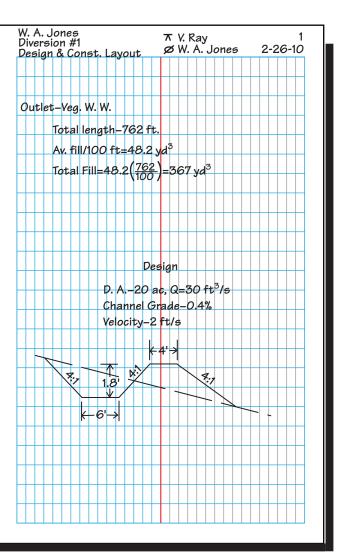
)ł	ງ. 1ອ	5 it.	rr . F	liit Re	cł	10 10	on ck	10 : E	# pp	З ill	wa	ay	/		7 Q	5	J. Gi	D eo	06	e Si	m	it	h			3	5-2	22	2-1	4
					L	ef	ft							9	;					1	Ri	ał	nt							
								6.	ail		i۳			6		۰f	1	on				-								
								μ		VC.	11		'a	91		,	IC	/10	5	EI		•								
																				_										
											6			2	.7				2	6										
									-	2.0 10	0			2	./	-		4	2.	$\frac{0}{2}$	-									
									_	4. 10	1			4	.1	-		+	4	$\frac{1}{2}$	-									
														5	6															
									-	5. 10)			<u>ט</u>	6	-		ł	5. 1($\frac{3}{2}$	-									
				-														-												
				С	01	19	iti	u	ct	ic	n	n	1 <i>e</i>	et	9	p	la	ne	5 8	ar	ıd	ε	P	ec	9					
																			((7							
																				۲	ŀ	F	9	9						
_				\vdash														+		Er	10	r.	Te	ec	h.					
_																				3	3-	22	2-	ec 1C)					
			-	-	-															_										
1																														
				-		-	-												-	_										
																			_											


Part 645 National Engineering Handbook

Sample D-4 Engineering notes for a diversion—Sheet 1 of 3

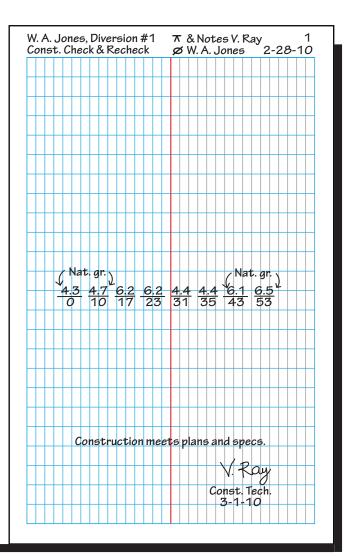
Engineering notes for a diversion

The format and information illustrated by these notes are satisfactory for small diversions when drainage areas are small, topography is reasonably uniform, elevations with respect to other structures are not important, and where approved design tables are available.


Notes similar to the format shown in sample D–8 should be recorded for the larger diversions where considerable cut and fill are required and where vertical control is important.

Part 645 National Engineering Handbook

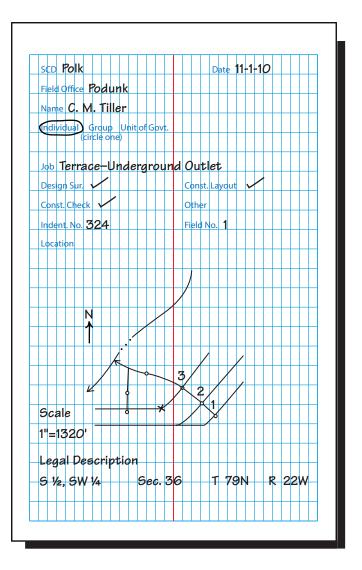
Sample D-4 Engineering notes for a diversion—Sheet 2 of 3


Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
0+00			9.3		
1+00			7.9		
2+00			7.5		
3+00			7.1		
4+00			6.7		
5+00			6.3		
6+00			5.9		
7+00			5.5		
7+62			5.2		

Part 645 National Engineering Handbook

Sample D-4 Engineering notes for a diversion—Sheet 3 of 3

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
	Chan. Rod	Ridge Rod			
0+00	8.6	Botton	of veget	ated wat	erway
1+00	8.2	6.4			
2+00	7.8	6.0			
			Recheck Chan.	3-1-10 Ridge	
3+00	7.5	5.6	6.6	4.7	
3+50	High 6.9	Low 6.1	6.4	4.6	ОК
					V. Ray
4+00	7.1	5.2	6.2	4.3	
5+00	6.6	4.7			
6+00	6.3	4.4			
7+00	5.9	3.9			
7+65	5.6	3.8			


Part 645 National Engineering Handbook

Sample D–5 Engineering notes for terraces—Sheet 1 of 3

Engineering notes for terraces

The layout notes illustrated here are considered appropriate for parallel terraces with underground outlet.

Terrace notes should be adequate to portray layout and checking in sufficient detail to ensure proper functioning of the terrace.

Part 645 National Engineering Handbook

Sta.	B.S.		H.I.		F.S. or Grade Rod	Elev. or Planned Elev.	
	Rod		Chann Rod	el	Ridge Rod	Cut	Fill
0+00	6.0		5.3				0.7
1+00	6.4		5.7				0.7
2+00	7.0		6.3				0.7
+50	-00 6.0 5.3 00 6.4 5.7 00 7.0 6.3 +50 8.3 ↑7.4 00 8.9 1 +50 9.1 1 00 9.3 1 +50 8.5 1 00 8.5 1 +50 9.4 1 +50 9.		4			0.9	
3+00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.5
+50	9.1						1.7
4+00	9.3				9.3	0.0	1.9
+50	8.9		7.4		9.4	0.5	1.5
5+00	8.5	5			9.5	1.0	1.1
+50	9.4	i Z	I		9.6	0.2	2.0
6+00	9.2	ŝ	2		9.7	0.5	1.8
+50	7.7				9.8	2.1	0.3
7+00	8.0				9.9	1.9	0.6
+50	10.0			,	10.0	0.0	2.6
8+00	10.0		7.	4		0.0	2.8
+50	7.6		, 6.	9		0.0	0.7
9+00	6.3		5.	8		0.2	0.5
9+50	6.5		5.	6		0.0	0.9

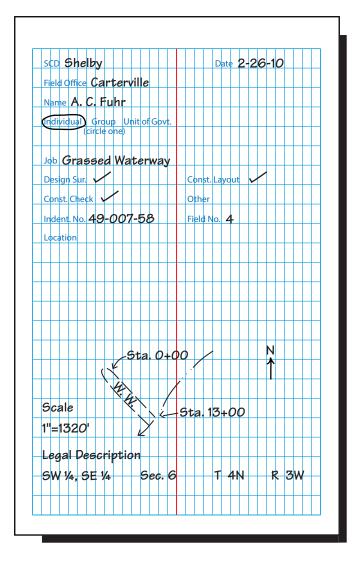
Sample D–5 Engineering notes for terraces—Sheet 2 of 3

C.M. Terra	ces	;											5										2-	.2	6	_1	1
Desig	jn ö	ιC	or	151		-a	yc	vu	t			×		•		11	ν					-	<u>_</u>	2		~1	
			_	_		\square	4				_												-			_	
		\square																									
Wate	r	\vdash	Fi	eld	19	lo	De	2	49	6	-											+	+	+	+	-	
Stor				ori			•				ci	n	a 1	8	8	f	t.					+	+	+	+	-	_
ft ³									•										5	2			4	_		_	
T1-				tor tal	1 1						11	2	+:		1	0	C	+	5								
		[]	m	ta:	e	C.	5	T																			
16		H	†	+	Π		1	1														+	t	1	1	٦	
38	9	un	n F	२००	4 6	Rei	a.	lik	10	19	=	115	5.	1								+	+	+	+		
47	-		•		Ĥ			+	-]-	-											+	+	+	+	-	
		$\left \right $	-			11	5	.1	-	0	_			_								+	+	+	+	-	_
57	A	/g.	, K	200	=	İ	3	Ϊ	=	ь	.ម															_	
45																											
36	Tr	У	8:	9–	1.5	5=	7.	4																			
66		H	+		Π		1	1														+	t	1	1	٦	
59	5	eg	m	en	ts	=	9	50	2	=1	9											+	+	+	+	-	
31			-				-							_								-	+	+	-	_	_
35	Δ.	10		G+	20	20			6	4	7		3/		1.	ft	3						-			_	
	~	Vai	1.	St		ay	6	-	1	19		-		r	t												
101	_													2	2 1		_		1	t	3						
116	K	e9	uii	red	19	ita	2ra	aç	je	=	18	58	1	1	2	=	3	1.	3	1	t		T	1			
0		\vdash	+	-	H	+	+	+	+		-											+	+	+	+	-	
647	\vdash	\vdash	+	-			+	+	-		_			_								+	+	+	+	-	_
						\parallel	4	_	T	ria	al	С	к										4			_	
						Ц																					
						U٤	5e	R	lic	da	е	R	00	1	7.4	4											

Part 645 National Engineering Handbook

Sample D–5 Engineering notes for terraces—Sheet 3 of 3

	Terra	ice No. 1		C. Tei	M. Till races	ler 5, Const.	Check	⊼	J. Jones & C. Tiller	
ta. B.S		F.S. or Grade Rod	Elev. or Planned Elev.							
Chan Roo	nel Ridge Rod		Elev.	-						
0 4.	7 3.8			- -						
1 5.'	7 4.2			-						
2 6.	0 4.7			-						
3 7.4	1 5.8			-						
4 7.9	9 5.9	Low Poir	it-OK	-						
5 B.	1 5.8			-	<u>5.5</u> 50	<u>6.7</u> 20	<u>7.1</u> 10	<u>8.1</u>	<u>5.8</u> 15	<u>7.</u> 24
6 B.	2 5.7			-		-Top 6.1	<u> </u>			
7 8.	5 5.6			-	otal L	ength C	omple	ted 40	30 Lin. ft	
B B.	7 5.7				ðteep Practio	Backslo ce Meets	pe See 3 Spec	eded 45 ificatio		
				-					Eng. To 12-3-	mes


Part 645 National Engineering Handbook

Sample D-6 Engineering notes for grassed waterway—Sheet 1 of 3

Engineering notes for grassed waterway

The format and content of this set of notes are suitable only for simple waterways where vertical controls and slope stakes are not necessary.

For the more complex types of waterways involving considerable cut and fill and requiring vertical control and sloped stakes, the general format illustrated in sample D–8 should be followed.

Part 645 National Engineering Handbook

Sample D-6 Engineering notes for grassed waterway—Sheet 2 of 3

- Sta.	B.S.	- . 	- F.S. or G rade R od	E lev. or P lanne d Elev.	
	Design I	Data			
	Drain	age Area			
	51	a. 8+00	=20 ac.		
	51	a. 13+00)=40 ac		
	Runoff				
	Q=33	5 ft ³ /s at	Sta. 8+	00	
	=56	ft ³ /s at	Sta. 13+	00	
	V=4 ft/s	5 C	Frade=3.	0%	
	Dimensi	ons			
	Sta.	0+00 to	8+00		
	Тор	width 22	.0' Depth	13'	
	Stat	8+00 to	o 13+ <i>00</i>		
	Тор	width 32	.0' Deptł	1.3'	
	(Runoff	& dimen	sions tak	en from	tables)
	Sta.	13+00 is	intersec	tion of	
	€ of wat	er way &	€main d	lraw.	

Typical existing x-sections (All rod readings with hand level) 5.0 5.3 5.5 7.5 7.2 5.6 4.9 47 0 10 15 16 18 20 35 50 0 10 15 16 18 20 35 50 0 10 15 16 18 20 35 50 0 10 15 16 18 20 35 50 $51a$ $3+00$ 56 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 54 0 10 18 20 24 25 35 50 54 0 10 18 20 24 25 35 50 54 10 16 10 10 10 10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
5.0 5.3 5.5 7.5 7.2 5.6 4.9 47 0 10 15 16 18 20 35 50 Sta. $3+00$ This section used in computing cut & fill in upper 800° Hub. 5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. $10+50$ This section used in computing cut & fill in lower 500° Outside edges of waterway staked at 100° intervals. Increases from 22° W. to 32° W. between stations
0 10 15 16 18 20 35 50 Sta. $3+00$ This section used in computing cut & fill in upper 800° Hub. <u>5.6</u> <u>5.9</u> <u>8.6</u> <u>8.5</u> <u>6.0</u> <u>5.4</u> 0 10 18 20 24 25 <u>50</u> Sta. 10+50 This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
Sta. $3+00$ This section used in computing cut & fill in upper 800'Hub. 5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. $10+50$ This section used in computing cut & fill in lower $500'$ Outside edges of waterway staked at $100'$ intervals. Increases from $22'$ W. to $32'$ W. between stations
This section used in computing cut & fill in upper 800' Hub. 5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. 10+50 This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
This section used in computing cut & fill in upper 800' Hub. 5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. 10+50 This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
cut & fill in upper 800' Hub. 5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. 10+50 This section used in computing cut & fill in lower 500' 0 0utside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
Hub. 5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. 10+50 This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. 10+50 This section used in computing cut & fill in lower 500' 0 0 0 10 <t< td=""></t<>
5.6 5.8 5.9 8.6 8.5 6.0 5.6 5.4 0 10 18 20 24 25 35 50 Sta. 10+50 This section used in computing cut & fill in lower 500' 0 0 0 10 <t< td=""></t<>
Sta. 10+50 This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
This section used in computing cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
cut & fill in lower 500' Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
Outside edges of waterway staked at 100' intervals. Increases from 22' W. to 32' W. between stations
at 100' intervals. Increases from 22' W. to 32' W. between stations
at 100' intervals. Increases from 22' W. to 32' W. between stations
at 100' intervals. Increases from 22' W. to 32' W. between stations
22' W. to 32' W. between stations
7+50 & 10+50

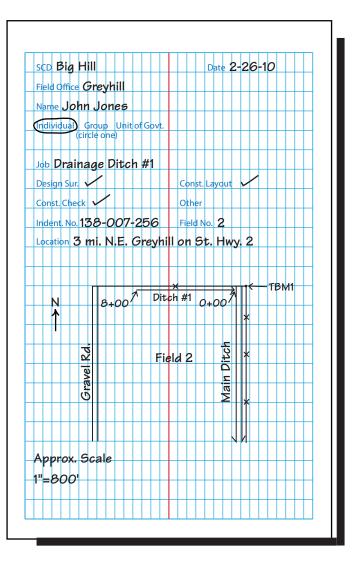
Part 645 National Engineering Handbook

Sample D-6 Engineering notes for grassed waterway—Sheet 3 of 3

Sta.	- B.S.	- H.I	- F.S. or G rade Ro d	Elev. or Planned		
				-EICV.		
	Chaine	d Length	13 <i>00</i> '			
	Min. Wi	dth				
	Sta.	6+00=2	3'			
	Sta.	11+20=3	2'			
	Area					
			r 800'=2			
			500'=33			
	(800'	x24')+(5	00'x33'):	=35,700	ft ²	
			:	=0.82 ac		

A. C. Ful /eg. Wat Const. (terway Check	⊼ J. Rowe Ø R. Doe	2 3-5-10
	Typical	constructed x-sectio	ทร
		(hand level)	
н 5.2	5.2 6.0	6.5 6.7 6.5 5.2	5.0 4.9
0	6 12	<u>6.5</u> <u>6.7</u> <u>6.5</u> <u>5.2</u> 15 17 20 29	<u>5.0</u> <u>4.9</u> 35 50
· · · ·		Sta. 3+00	
Н <u>5</u> .0	5.0 5.6	63 65 63 58	H 5.0 4.8
0	<u>5.0</u> 5.6 6 12	<u>6.3</u> <u>6.5</u> <u>6.3</u> <u>5.8</u> 18 22 25 30	<u>5.0</u> <u>4.8</u> 38 50
		Sta. 10+50	
		tion meets plans and	
		tions. Waterway seed	led
	on this d		
		J.R.	or
		Cons. Te 3-5-1	ch.
		3-5-1	0

Part 645 National Engineering Handbook


Sample D-7 Engineering notes for small drainage ditch—Sheet 1 of 3

Engineering notes for small drainage ditch

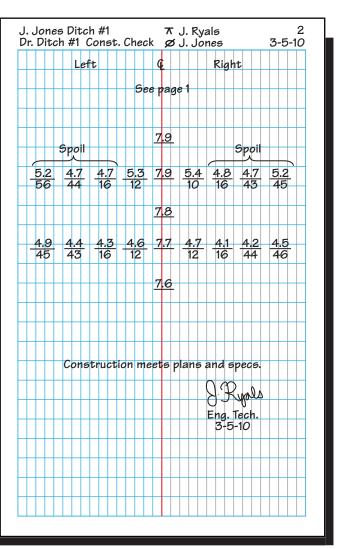
These notes are for a small ditch. It was determined by taking a few random shots that a ditch with bottom elevation at outlet end 1 foot above bottom of the main ditch and having a 0.05 percent bottom grade would give the desired drainage. With this information, the planned bottom elevation and grade rod at each station were calculated.

Spoil is to be spread uniformly along each side of ditch during construction. For that reason, reference hubs showing cut from top of hub were offset 50 feet, so they would not be disturbed during construction.

The topography was reasonably uniform; therefore, slope stakes were set at 200-foot intervals. Line stakes were set on the centerline at 100-foot intervals.

Part 645 National Engineering Handbook

Sample D-7 Engineering notes for small drainage ditch—Sheet 2 of 3


Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM1	4.22	45.22		41.00	
Side shot			9.0	36.2	
0+00			+8.0	37.2	
2+00			+7.9	37.3	
4+00			+7.8	37.4	
6+00			+7.7	37.5	
8+00			+7.6	37.6	
TP1	3.94	44.34	4.82	40.40	
BM1			3.34	41.00	
	8.16	ОК	8.16		

J. D	 ee	Jo si/	an ar	ee 1 8	ι ζ(Dit Co	cc n	n st	# 5.	۱ ارد	v	01	ıt			0	ר ז או פ	I. R.	R	a	N∂ V	Ir	รร	5			2	-2	6	-10	2
			-					T	-		-					ñ				,	5						-	_		 T	ĥ
۳٧	/"	D	it	cl	n—	-	4:	1 9	э.	9							Ц														
6	0	d	na	ail	n	ez	ar	a	rc	bu	na	d i	in	W		5i	de	1	6	1									+	+	۲
c	ot	t	or	11	0	00	i	in	N	E	. (co	r	10	r	fe	nc	e		_										_	_
			[-	[]	ľ		ľ		ľ		ľ	1	[
в	0	tt	0	m	0	f١	m	ai	n	di	ta	sh																			
+	H				┝	H	╞	-	\vdash	H	┝	╞	-	┝	\vdash	\vdash	\vdash	+	-	-						\square		\square	+	+	-
															(È	Ц				1	Ri	gł	۱t							
																						H	ũ٤	15							
+						H		-		Η						Η	5						-						+	+	۲
_															C	=2	2.4 5.6	7	_	_	C		3 5						_	+	_
															-).e	5			-	5	0.	n n							
Τ															~																
+	-					\square		-		H	-	-	-		()=	4	.5 .4	-	-	_	С	=,	p.,	b				\vdash	-	+	-
															-	ŏ).C	5			-	5	4. D.	n							
															C		2.9	- 1					3								
+						\square		\vdash		\square	-		-				2c 4.{			_								\square	+	+	۲
							L	L		\square					-	C	Þ.¢	5			-	5	4 0.	Ò						\downarrow	
															c-	.3	.0	,			С										
1						H		t		Η				–	-	4	ŀ.7	'				-	4.	3					+	+	٦
-															-	0).(រ	_	_		5	4. D.	ō				\square	_	+	_
															С	=1	.9						2.								
																5	5.7	<u> </u>					4.	7							٦
+	-				┝	\vdash	┝	┝	┝	H	┝	┝	┝	┝	H	0). (ī	-	-		50	þ.	0				\vdash	+	+	-
							L	L									Ц														
+					\vdash	\square	\vdash	┢	\vdash	Η	\vdash	\vdash	\vdash	\vdash	\vdash	Η		+											+	+	۲
4																														+	_
1							F	F	F		F	F	F		Π															+	1
+	H				-		-	-	-	H	-	-	-	-	\vdash	Η	\vdash	-	-	_								\vdash	-	+	\neg
				N	_ +			ļ.,	+	٠,		_	n			5.1	ire	4	F	~				5	-	- 1		5			
				N,	0.		5	u	٢	μ		10	"	16	a	РЧ	ne	S	''	0	m	Ľ	0	P		1	u	P.			

Part 645 National Engineering Handbook

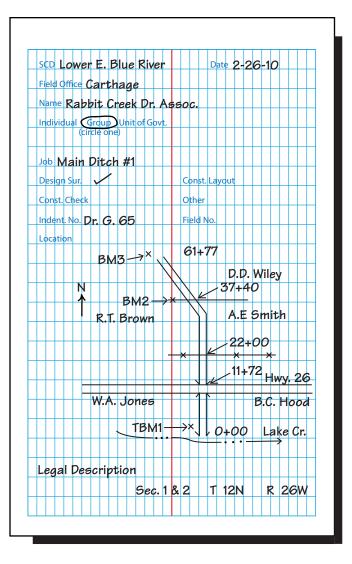
Sample D-7 Engineering notes for small drainage ditch—Sheet 3 of 3

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM1	4.00	45.00		41.00	
0+00			+7.8	37.2	
2+00			+7.7	37.3	
4+00			+7.6	37.4	
6+00			+7.5	37.5	
8+00			+7.4	37.6	
BM1			4.00	41.00	ОК

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 1 of 17

Engineering notes for surface drainage (main ditch) design survey


These notes are for a proposed main ditch involving enlargement and extension of an existing ditch. However, the general format is applicable to all open ditches.

A series of temporary bench marks was set prior to the design survey.

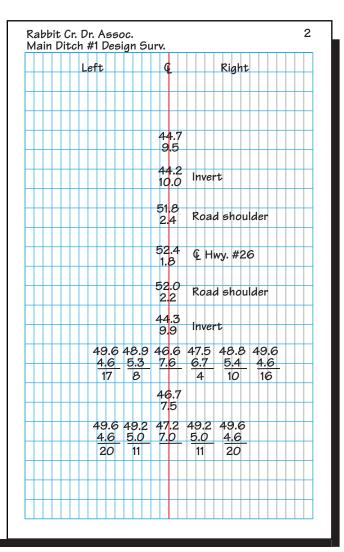
In the design survey, sufficient cross sections were taken of the old ditch to determine how much of it was adequate and the volume of excavation required to enlarge other parts.

The center of the old ditch was used as centerline for taking cross sections. This may not be practicable where there is water in the old ditch. In such cases, it may be better to establish a baseline along one side of the ditch and extend the cross sections from it.

The uniformity of the topography made it feasible to use an interval of 200 feet between profile shots and an average interval of 400 feet between cross sections. Each job will have its own conditions for spacing of profile shots and frequency of cross sections.

Part 645 National Engineering Handbook

Sample D-8 Engi


Engineering notes for surface drainage—Sheet $2 \mbox{ of } 17$

ĵ.	2-26	1	/als rown nith	K. R O. B C. S	ø CH.			50C.		#1	tcl		lair	M
		ght				q		\mp	5	Lef				
		N. &	40' V	dΔ	aze	e b	tre	an	pec	8"	l ir	na	0 ^d	20
			+ $+$ $+$	l Out	n #).0 .8		ain i			. 04	та	N. 8		
				/	2	39		+						
	from sta.	00 t	. 0+	sta	\vdash	11. 39		+						
in ize	quate stabil	d well	ana	siz		11.		+						
	on	getat	n veg	\wit	.3 5	39 11.		+						
								+						
.9	9.1 47 8 5.	.8 4 1 4	48 5.	42.3	2.0	3 4: 1	42.3	.6 3	46	·8.9	44	49. 4.	.8	48. 5.
	0 5	6	10	2		<u> </u>	2	7		12	5	2	0	5.
d -	in fiel	/ area	Low		4	<u>42</u> 11.		+						
48 5.	8.9	5.4 4	9 45	43.9			3.7	4:	.8	48				
5. 55	5.0 14	5.4 4 9.5 7	8	10.0 4	.9	<u>10</u>). <u>2</u> 3	10	1	5 1				
								\pm						
								Ŧ						
								+						\mid

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 3 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		53.90			
TP2	4.61	54.23	4.28	49.62	
		(54.2)			
10+00					
11+36	Outlat a	nd 6'y6'	R.C. box	culvant	
11+00	Outlete		R.C. D0A		
11+42					
11+54					
11+66					
11+72		م م م الدم س			
11+72	Upper ei	ıd culver	•		
12+00					
14+00					
16+00					

Part 645 National Engineering Handbook

Sample D-8 En

Engineering notes for surface drainage—Sheet 4 of $17\,$

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		54.23			
TP3	4.83	55.33	3.73	50.50	
18+00					
20+00					
22+00					
24+00					
TP4	3.97	55.36	3.94	51.39	
26+00		(55.4)			
28+00					
30+00					
32+00					
TP5	3.42	56.05	2.73	52.63	

				Le	ft						ę				R	g١	۱t					
											Γ					Ĭ						
			+												+							
	+		+								\square				+			+				
	+	-	+	-			-	-		4	7.2 5.1	:+			+			+				
	$\left \right $		_												_			_				
					50).7	1	50	1	4: 7	7.5	5	50	1	50	2.0	6					
					4	6	-	<u>5.</u> 10	2	7	.8	-	5.2 10	-	4	7 20	_					
															1							
ł	Ho E-V	0 <i>0</i> V	Fe	on nc	пт e	n	rra	p.	'	7	7.7 '6					L	.0	N	are	a		
			1																ie		١	
	+		+	+	50).1 2	E	50 5.(.3	48	3.0 .3	-5	0. 4.9	4	-5	1.2	2	5).; .6	1	1	
	+	_	+		2	.2 0	-	9)	<u>′</u>		-	10			1.1 17	-	3	65	5		
	$\left \right $		+	_			_	-							_							
															_							
											8.3	5										
											7.1											
					51	.4	Ę	50	.7	48	3.5	5	0.	6	5	1.5 .9	5					
					<u>4</u> 1	4	-	4. 8	5	-	8	- -	+.c 8		-	13	-					
			1			•		-		7		,			+							
┝	\square	-	+	-			+	-	-	6	8.7 3.7			+	+			+				
-	+	+	+	+	51	.4	. !	51.	8	48			51.	1	5	1.7	7	+				
	\square	_	+	+		.4 .0	_	<u>4.</u>	4	6	6		<u>4.3</u>	5	2	1.7 5.7		+				
					1	4		8	>				10		-	6						

Part 645 National Engineering Handbook

4

Engineering notes for surface drainage—Sheet 5 of 17 Sample D-8

			ES or	Elev. or	Main Ditch #1 Design Surv.	
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Left C	Rig
		56.05			492	+++
34+00		(56.0)			49.2 6.8	
36+00					5.9 51.6 49.3 51.4 4.1 4.4 6.7 4.6	4 52
					<u>4.1</u> <u>4.4</u> <u>6.7</u> <u>4.6</u> 13 8 10	7
86+72					Ditch curves left	
37+40					Smith-Wiley E–W. Boundary fence	
BM2	2.99	55.61	3.43	52.62	20 ^d nail in S. side corner post in S.	W.
	23.51	00.01	19.99		corner D.D. Wiley tract El. 52.60	
	3.52	Correct	elev. BM2	2=52.60		
70.00	Diff. in el	ev. BMI &	BM2=3.	50 OK		
38+00						
40+00					49.3	
					52,151,749,551;	2 51
TP6	5.62	57.24	3.99	51.62	52.151.749.551. <u>3.53.96.144.</u> 14777	<u> </u>

Part 645 National Engineering Handbook

Sample D-8

Engineering notes for surface drainage—Sheet $6 \mbox{ of } 17$

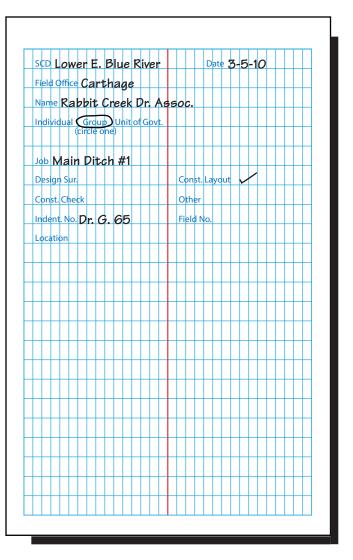
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.
		57.24		Elev.
40+25	End old		F P	51.9
40+20	Ena Dia	anch	5.3	51.9
42+00				
44+00				
46+00				
48+00				
TP7	4.46	57.28	4.42	52.82
	4.40	(57.3)	-112	02.02
50.00		(07.0)		
50+00				
52+00				
54+00				
56+00				
TP8	3.26	57.22	3.32	53.96

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 7 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		57.22			
58+00					
60+00					_
61+77					_
ВМ3			4.19	53.03	_
	39.84		35.91		_
	35.91 3.93				_
		ect elev.	BM3=53	.00	
			1 & BM3:		
	Allo	owable er	ror=0.1∨	M	_
			=0.1	1.2	_
			=0.11		_
					_
					 _
					_
					_
					 _

	Dito		ft		Ĭ		q				R	ligł	١t					
++					53	5.2	53	.2	53	5.1								
		+		\vdash	4.	0 5	4	.2 0	53 <u>4</u> 1	1		+					+	
		+		\vdash	R	7	53	.3		0							-	+
++		+		\vdash		+	53 3	9				-					-	
				\vdash		+	54 3	.0	E.	- 4	~							- 6
		+		\vdash		+	3	2	Er	1a	01	pr	ØP	005	bec	10	170	2rı
++		+		\vdash		+	+										+	+
		+		\vdash		++	+					_					-	-
20 ^d	nail i	n 12	2"	peca	an 1	tre	e 5	0' 1	N. 5)ta	a. (61+	7	7				
++																		


Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 8 of 17

Engineering notes for surface drainage (main ditch) construction layout

To expedite the construction layout survey, the planned elevation of the ditch bottom at each station was determined from the plans and entered on a sheet of paper so it could be referred to conveniently. This made it possible to calculate and record the grade rods rapidly after each instrument setup.

To save space, the layout notes have been recorded at 200-foot horizontal intervals. However, in actual practice, the slope stakes would be set at not more than 100-foot intervals.

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 9 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM1	4.53	53.63		49.10	
TP1	5.00	54.84	3.79	49.84	
)ld ditch	adequat	(54.8) te Sta. O	+00 to 9	+00	
9+00			+10.8	44.0	
10+00			+10.7	44.1	
12+00			+10.5	44.3	
14+00			+10.3	44.5	
14400			+10.3	44.5	
6+00			+10.0	44.8	
TP2	3.84	55.02	3.66	51.18	
		(55.0)			
18+00			+10.0	45.0	
20+00			+9.8	45.2	

20 W.	а &	na			L	e											-	- 1	3.6	-		•••	-	-					
20 W.	d &	na 7					ΓĽ							(È					1	Ri	gł	۱t						
W.	&	7		ir		م	r	0		и	ŧ.	rø	0	Δ	0	,													
	-	15	5'	N		s.	ta		0-	ьC			Na Na	aiı	1 I	Di	tc	h	#	1									
			-	-		-	-		-		-								1										-
		+	-	_	\vdash		-							-					+					_				-	-
		_	_	_			L	C	=					C=	-0)	-	C=	:5			_	_						_
										5. 2.			•	10	.e .c	2			5 12										
								c.		— •				0					:4	. 1									
								0.	-5	5.8	3	`		10	D.1	1			5										
_		-	_	_	Η		-		1	1.8	в	-	-	С	.0	7	_	-	11	.6	5	-	-	_		_	-	+	-
								С	={	5.:	2		C:	=2	.3	5		Cŧ	:5										
									5	5.: 2.	3			8	.2	2		+	5 12	.2	2								
								С		— ·	· ·		~	=2					14 :5	- 1									
		+	-	_	\vdash		┢	U:		r.c 5.!					2 B.1		-	-=	5 5			-	-	_				+	-
			_	_			L		1	1.(6	_	•		.0				12	.(2	_	_	_					_
								С	=4				C:	=2	.4	ŀ	(C=	:4										
									- <u>t</u>	5.! 1.(-		.e			+	5	.4									
										1.0									-		-								
-		-	-	_	Η	-	-										_	-	+		-	-	-	_		_	-	-	-
							L	C:	-0	5 (0		c.	-2		,		c	=5		,		_						_
								Ŭ-		5.0			γ.	=2 7	.8	5			4	.e	5								
									12	2.0	0				.0				12	2.4	1								
		+		_			⊢	С	=5	5.5	3		C:	=2	.3	5		C	=					_					-
		_	_	_			-		4	1.! 2.(5		-		.5				4			_	_	_			_	_	_
									14	2.0	0			C	.0				12		-								
							F												-										

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 10 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		55.02			
22+00			+9.5	45.5	
24+00			+9.2	45.8	
TP3	4.57	55.47	4.12	50.90	
		(55.5)			
26+00			+9.5	46.0	
28+00			+9.2	46.3	
30+00			+8.9	46.6	
50400			+0.9	40.0	
32+00			+8.6	46.9	
TP4	6.38	56.42 (56.4)	5.43	50.04	
34+00			+9.2	47.2	
36+00			+9.0	47.4	
			10.0		

Rabbit Cr. D Main Ditch a Const. Layo	#1	2
L	eft 🥵 Right	
	C=5.0 C=2.2 C=5.1 4.5 7.3 4.4	
	C=4.4 C=2.2 C=6.0 4.8 7.0 4.2	
	10.8 0.0 12.0	
	C=5.1 C=2.3 C=4.8	
	4.4 7.2 4.7	
	12.2 0.0 11.6	
	C=5.0 C=2.2 C=5.1	
	4.2 7.0 4.1	
	12.0 0.0 12.2	
	C=4.6 C=2.1 C=4.8 4.3 6.8 4.1	
	4.5 0.0 4.1 11.2 0.0 11.6	
	C=4.4 $C=1.9$ $C=4.6$	
	4.2 6.7 4.0	
	<u>4.2</u> <u>617</u> <u>4.0</u> 10.8 <u>0.0</u> 11.2	
	C=4.2 C=2.0 C=4.0	
	5.0 72 5.2	
	10.4 0.0 10.0	
	C=4,4 C=1,9 C=4,2	
	4.6 7.1 4.8	
	10.8 0.0 10.4	

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 11 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		56.42			
BM2			3.84	52.58	
	24.32 20.84		20.84		
6	3.48		<u> </u>		
	ect elev. I in elev. B			Check OK	
38+00			+8.7	47.7	
10+00			+8.4	48.0	
TP5	5.19	56.50	5.11	51.31	
10+30	old ditcł ends	1	+8.5	48.0	
	011010				
12+00			+8.2	48.3	
14+00			+8.0	48.5	
16+00			+7.7	48.8	
18+00			+7.4	49.1	

0	ทธ	it.	La	T						П										
-			_	L	ef	t					_	¢			R	igł	nt		++	
				T						H										
-			+	+					+	\square	-					-		$\left \right $		++-
									_		_									
							С	=4	ŀ.3		$c_{=}$	1.6		c=	4.1					
				T				4	1.3 1.4 .6			7.1		4	1.6).2					
-			+	┢								0.0				-		++		++-
						(C=	34	6	4	;='	15 9 00	¢	=3 4	.5					
							-	4	8		_6	9		4	.9 .0					
								9	.2		Ľ			9	.0					
				+					+											
+			+	┢	-	1	<u>-</u>	3	8	6	_7	9	C.	=3	8	+		$\left \right $	+	++
						`	/-	4	8 .7	Ĭ	-4	9 .6 .0	Ŭ.	4	.7					
								9	.6		C	0.0		9	.6					
						(C=	:3	.4 8 .8	C	=3	5.4 .8 0.0	C:	=3 4 9	.6					
			+	\top			-	4	8		4	8		4	6	•				
+			+	┢			<u> </u>	.3	3	0	_7	33	C	=3 4 8	3	-		++	+	++
			_	_			-	4	.7	Ĭ	-2	5.3 1.7 0.0		4	.7			\square		
								8	.3 .7 .6		70	0.0		8	.6					
						(C=	:3	.4 .3 .8	C	=3	5.2 500	C	=.つ						
T			+				-	48	. <u>0</u> .8		-	00		4	.4 .6	-				++
+	\square	\vdash	+	+	-	(C=	3	0	С	=2	0	C	=2 4	.9	+		+	+	++
			_					4	.4		4	4	ļĺ	4	.5	-		\parallel		
								8	.0		C	0		7	.8					
t			+	+					+		+									++

Part 645 National Engineering Handbook

Sample D–8 Engineering notes for surface drainage—Sheet 12 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		56.50			
TP6	5.03	57.32	4.21	52.29	
		(57.3)			
50+00			+7.9	49.4	
52+00			+7.6	49.7	
54+00			+7.3	50.0	
				507	
56+00			+7.0	50.3	
TP7	5.08	57.30	5.10	52.22	
	old ditcl ends	1			
58+00	enas		+6.8	50.5	
60+00			+6.5	50.8	
61+82			+6.3	51.0	
ВМЗ				E0.07	
	39.62		<u>4.33</u> 35.75	52.97	
	39.62 <u>35.75</u> 3.87		20.10		
	3.07				

Left C Right C=3.1 C=3.1 C=3.1 4.8 4.8 $4.88.2$ 0.0 $8.2C=2.9 C=2.8 C=2.94.7$ 4.8 $4.77.8$ 0.0 $7.8C=2.8 C=2.8 C=2.74.5$ 4.5 $4.67.6$ 0.0 $7.4C=2.7 C=2.8 C=2.84.3$ 4.2 $4.27.4$ 0.0 $7.6C=2.7$ C=2.7 C=2.7 4.1 4.1 $4.17.4$ 0.0 $7.6C=2.4$ C=2.5 C=2.6 4.1 4.0 $3.9C=2.6$ C=2.6 C=2.5 3.7 3.7 $3.87.2$ 0.0 7.0	Rabbit Cr. Main Ditch Const. Lay	Dr. Assoc. 1 #1 /out	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Left 🤅 Right	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{4.3}{76}$ $\frac{4.3}{74}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C=2.7 C=2.8 C=2.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.3 4.2 4.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.4 00 7.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{4.1}{7.4}$ $\frac{4.1}{7.4}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C=2.4 C=2.5 C=2.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>4.1</u> <u>4.0</u> <u>3.9</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.8 0.0 7.2	
		C=2.6 C=2.6 C=2.5	
		3.7 3.7 3.8	
		7.2 0.0 7.0	
	+++++		++++

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 13 of 17

Engineering notes for surface drainage (main ditch) construction check

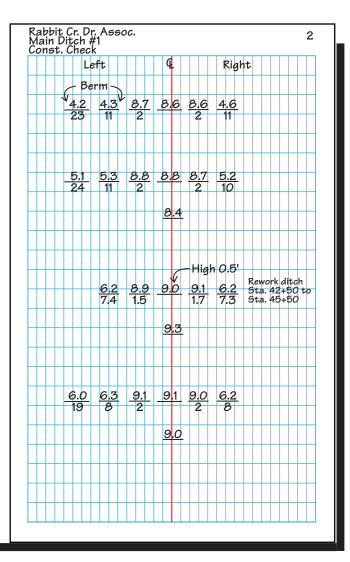
The following check notes are for a ditch that was uniform in appearance. A small trickle of water along the ditch bottom indicated uniform grade except at one or two points. These facts were taken into consideration in deciding how intensively the work should be checked.

Design data from the plan such as bottom width, side slopes, and the planned bottom elevation at each station were listed on a sheet of paper so it would be convenient for reference. This was done before starting the survey.

S	CD	L	0	w	er	E		В	lu	е	R	iv	er						D	ate	2	1-	3	0	-1	0			
Fi	elo	l C	offi	ce	С	a	rt	۶h	a	je	?																		
N	an	ne	R	al	۶Ł	vit	; (Cr	ee	ek	٦	۶r.	. /	١٤	59	0	c.												
In	di	vic	lua	al (irc	up	D	Ur	nit	of	G	ov	t.															
				(cir	cle	0	ne)																				
Jo	b	Μ	la	ir	ı [Di	ta	:h	#	ŧ1																			
D	esi	gr	ı S	ur.												С	on	st.	La	yo	ut								
	on					~		1								0	the	er	(Co	n	51		R	e	ch	e	ck	
In	de	nt	N	0	D	r.	G	;.	6	5								I N									-		
	bca				-				-	-																			
			_																						_				
			_																			_	_	_	_				_
			_																			_	_	_					_
			_																			_	_	_					_
			_																			-	-	-	_				_
	-		_																			-	-	-					-
			_																			_	_	_					_
			_																			_	_	_					_
			_																			_	_	_					_

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 14 of 17


Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM1	3.80	52.90		49.10	
	4.83	54.50	E OI	40.00	
TP1	4.03	54.72	3.01	49.89	
TP2	4.04	54.50	4.26	50.46	
0.00			105	44.0	
9+00			+10.5	44.0	
12+00			+10.2	44.3	
16+00			+9.7	44.8	
TP3	4.28	54.77	4.01	50.49	
		(54.8)			
22+00			+9.3	45.5	
TP4	4.46	55.45	3.78	50.99	
		(55.4)	0110		
28+00			+9.1	46.3	
105	4.00	55.69	4.02	E1 47	
TP5	4.26	00.09	4.02	51.43	

Mair	vit Cr. Ditc it. Ch itch	h#	1			ck	⊼ ø	J. K J. J	lones	i 		3-5	7 5-10	
				·										
		Le	ft			(ŧ.		R	ight				
20	^a nail	in 8	3" p	eca	n t	ree	bla	zed						
40	W. &	75	' N.	Sta	a. O	+00	2							
	sign:							ann						
	JIGU:		, vv,	2.1	33	, 10		51111						
		Ber	·m ~		\square		\square							
	¥5.		5.4	¥ 1	0.6	10	.6	10.5	5 5.	5				
	<u>5.</u> 2	4	13	-	2		Ť	10.5 2	12	2				
						1								
						<u> 10</u>	2.4							
	_		= _					07	-					
	5		<u>5.2</u> 11		9.7 2		7	<u>9.7</u> 2	5.					
					-			ΗŦ						
_					$\left \right $	$\left \right $	$\left \right $							
	4.		4.2 12	2	9.5 2	9	3	<u>9.4</u> 2	4.:	2				
	2	2	12		2			2	13					
						6	.3							
	\vdash	+		\square	++		Ĩ				+			
			\square			\square								

Part 645 National Engineering Handbook

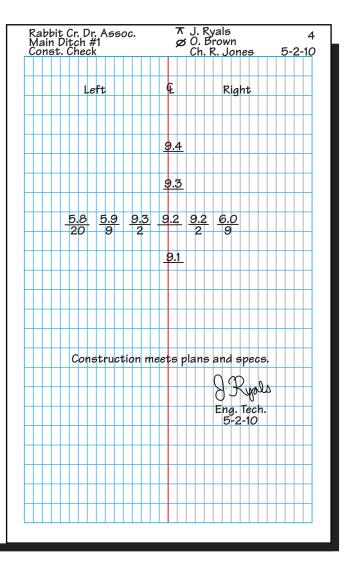
Sample D-8 Engineering notes for surface drainage—Sheet 15 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		55.69			
34+00		(55.7)	+8.5	47.2	
BM2	4.12	56.73	3.08	52.61	ОК
	Correct	elev. BM (56.7)	2=52.60		
40+00		(0011)	+8.7	48.0	
42+00			+8.4	48.3	
TP7	4.32	58.04 (58.0)	3.01	53.72	
44+00			+9.5	48.5	
46+00			+9.2	48.8	
TP8	4.02	58.95 (58.9)	3.11	54.93	
52+00		()	+9.2	49.7	
54+00			+8.9	50.0	

Part 645 National Engineering Handbook

Right

<u>6.7</u> 8 3

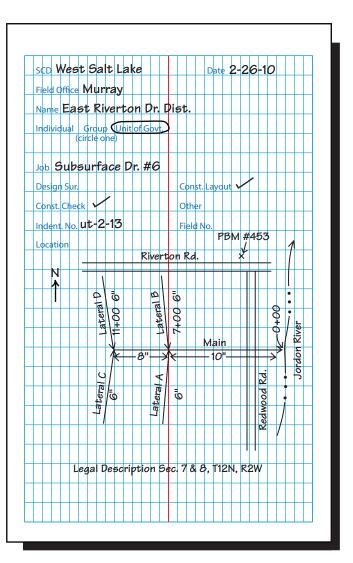

Sample D-8 Engineering notes for surface drainage—Sheet 16 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	-		abbi ain l onst		ECK				
		58.95		Elev.	-				Lef	t		Œ	1
TP9	4.14	60.01	3.08	55.87	_							Ī	
58.00				505	 -			6.	Beri 5	n 6.7	9.6	9.5	5
58+00			+9.5	50.5	-	_		18	5	8	<u>9.6</u> 2		-
60+00				50.8	_							9.	3
			+9.2		_								
61+82				51.0	-							8.	9
ВМЗ			+9.0	53.04	-	_							_
	42.27 38.33		6.97		 -	_							+
	3.94					_							+
		1 elev. BN	BM3=53 11 & BM3		_								+
		Cheo	k OK		 -								
					-								
						_							_
					_								+
					-						+++		+
					 -		+						+
					-								1
					-								
					-								

Part 645 National Engineering Handbook

Sample D-8 Engineering notes for surface drainage—Sheet 17 of 17

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
BM2	5.04	57.64 (57.6)		52.60	
42+00			+9.3	48.3	
43+00			+9.2	48.4	
44+00			+9.1	48.5	
45+50			9.0	48.6	
BM2			5.04	52.60	ОК


Sample D-36 Engineering notes for subsurface drain (main line) construction layout and construction check—Sheet 1 of 4

Engineering notes for subsurface drain (main line) construction layout and construction check

These notes illustrate the general format for subsurface drains. The design was prepared from a survey and soils investigations made during development of an overall plan for the district.

The construction check notes illustrate a simple method of checking from the reference hubs. It is simpler and faster than carrying elevations from bench marks, and it is satisfactory for most jobs if reference hubs are offset a safe distance where they will not be disturbed during construction. In using this method, the person who is to do the checking must be given the following information:

- 1. Planned cut from top of reference hub to bottom of trench at each station.
- 2. Outside diameter of each size pipe used in the line.


Sample D-36 Engineering notes for subsurface drain (main line) construction layout and construction check—Sheet 2 of 4

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Reference Hubs 8 ft Left Ç
ВМ	6.43	62.60		4356.17	
TP1	3.32	58.81 (58.8)	7.11	55.49	
0+00					
0+10			+10.8	48.0	
					C-6.7
0+20			+10.8	48.0	4.1
					C-6.6
1+00			+10.7	48.1	4.0
					C-7.1
2+00			+10.6	48.2	3.5
2.54					
					C-7.4
3+04			+10.5	48.3	3.1
					C-7.2
4+00			+10.4	48.4	3.2

Rabbit Cr. Dr. Assoc. Main Drain #6 Const. Check	⊼ T. Scope Ø I. Rodd Ch. H. Roy	ı 2-26-10
+++++++++++++++++++++++++++++++++++++++		
Left	🗘 🛛 Right	
U.S.G.S. BM #453 S	F Corner Sec. 6	
5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		
+++++++++++++++++++++++++++++++++++++++		
🛿 Jordan River	46.0 elev. 12.8	
Begin 10" CMP	11.3 Drive piling at C=6.3	0+12
	4.5	+++++
Begin 10" conc. file	C=6.4	
	4.3	
+++++++++++++++++++++++++++++++++++++++	C=6.6	
R.O.W. fence	4.0	
& Redwood Rd.	55.5 elev. 3.3	
	C=6.8	
	3.7	
	¢=6.7	
	3.7	
Note: Cut to be mee	oured from top of referen	1ce hubs.

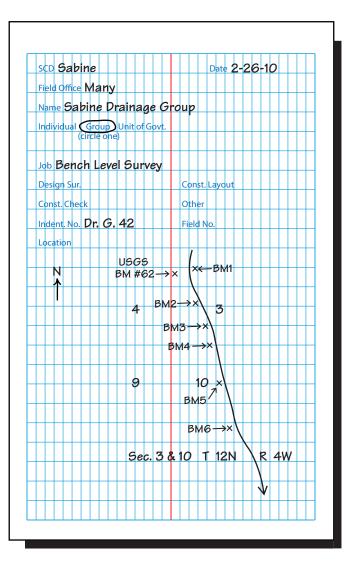
Sample D-36 Engineering notes for subsurface drain (mai	n line) construction layout and construction check—Sheet 3 of 4
---	---

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Reference Hubs 8 Left ©
					C=7.4
5+00		58.81	+10.3	48.50	2.9
		(58.8)			C=7.3
6+00			+10.2	48.60	2.9
					C=7.3
7+00			+10.1	48.70	2.8
					C=7.0
7+03			+9.8	49.0	2.8
					C=7.0
8+00			+9.7	49.1	2.7
TP2	3.19	59.70	2.30	56.51	
					C=6.9
9+00			+10.4	49.3	3.5
					C=6.8
10+00			10.3	49.4	3.5
					C=6.6
11+02			+10.2	49.5	3.6
TP3	4.12	60.04 (60.0)	3.78	55.92	
ВМ			3.85	4356.19	
	17.06	ОК	17.04		

Sample D-36 Engineering notes for subsurface drain (main line) construction layout and construction check—Sheet 4 of 4

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	Planned cut from Ref. Hub to bottom
	On Ref. Hub		to bottom of trench		of trench
0+20	4.7		11.4		6.7
3+04	4.6		12.0		7.4
7+00	4.9		12.2		7.3
7+03	4.9		11.9		7.0
9+00	4.8		11.7		6.9
11+02	4.8		11.4		6.6

Tile Rod Reading 0.D Top of Tile ft. 10,4 1.0 10,4 1.0 11,0 1.0 11,2 0.8 11,1 0.8 11,0 0.8 10,6 1.0 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.8 10,6 0.9 10,6 0.9 10,6 0.9 10,6 0.9 10,6 0.9 10,7 0.9 10,7 0.10,1 10,1 0.10,1 10,1 0.10,1 10,1 0.10,1 <	0.D Top of Tile 1.0 10.4 1.0 11.0 1.0 11.0 1.0 11.2 0.8 11.1 0.8 11.0 0.8 10.6 0.8 10.7 0.8 10.8 0.9 10.8 0.9 10.8 0.9 10.8 0.9 10.8 <th>E. Riverton Dr. Dist. Main Drain #6 Const. Check</th> <th>⊼ J. Brown Ø R. Rush</th> <th>3 3-12-10</th>	E. Riverton Dr. Dist. Main Drain #6 Const. Check	⊼ J. Brown Ø R. Rush	3 3-12-10
1.0 10.4 1.0 11.0 1.0 11.0 1.0 11.2 0.8 11.1 0.8 11.0 0.8 10.6 0.8 10.8 0.9 10.8 0.9 10.8 0.9 10.8 0.9 10.8 0.9 10.8 0.9 10.8	1.0 10.4 1.0 11.0 1.0 11.0 1.0 11.2 0.8 11.1 0.8 11.0 0.8 10.6 0.8 10.7 0.8 10.8 0.9 10.8 0.9 10.8 0.9 10.8 0.9 10.8	Tile O.D	Rod Reading Top of Tile	
1.0 11.2 0.8 11.1 0.8 11.0 0.8 11.0 0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs. J. Brown.	1.0 11.2 0.8 11.1 0.8 11.0 0.8 11.0 0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans, all construction meets plan and specs. J. Brown,		10.4	
0.8 11.1 0.8 11.0 OK with in 0.1 ft 0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs.	0.8 11.1 0.8 11.0 OK with in 0.1 ft 0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans, all construction meets plan and specs.	1.0	11.0	
0.8 11.0 OK with in 0.1 ft 0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs.	0.8 11.0 OK with in 0.1 ft 0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs.	1.0	11.2	
0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans, all construction meets plan and specs. J. Brown,	0.8 10.6 Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans, all construction meets plan and specs. J. Brown,	0.8	11.1	
Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans, all construction meets plan and specs. J. Brown,	Construction dimensions, elevations, and locations of manholes, outlet prop and filter noted on "As -built" plans, all construction meets plan and specs. J. Brown,	0.8	11.0 OK with i	n 0.1 ft
locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs. J. Brown,	locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs. J. Brown,	0.8	10.6	
locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs. J. Brown,	locations of manholes, outlet prop and filter noted on "As -built" plans. all construction meets plan and specs. J. Brown,			
noted on "As -built" plans. all construction meets plan and specs. J. Brown,	noted on "As -built" plans. all construction meets plan and specs. J. Brown,			
		noted on "As -b	uilt" plans. all const	
			<u> </u>	Brown


Part 645 National Engineering Handbook

Sample D-10 Engineering notes for bench level survey—Sheet 1 of 5

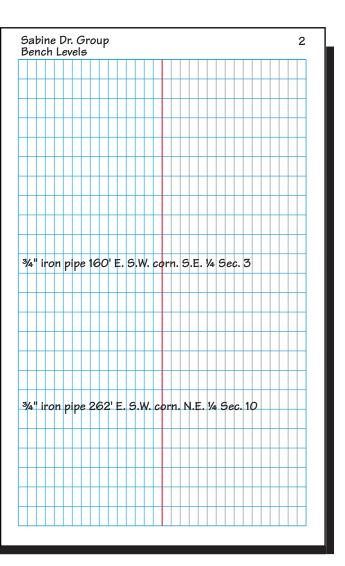
Engineering notes for bench level survey

These notes illustrate the general format for setting bench marks as vertical control points for subsequent surveys and construction work.

It will be noted that turning points have been numbered in these sample notes. This practice is optional.

Part 645 National Engineering Handbook

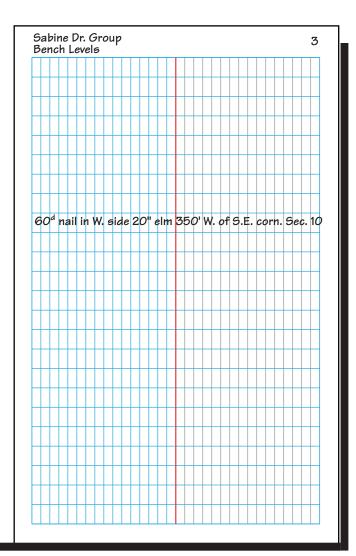
Sample D-10 Engineering notes for bench level survey—Sheet 2 of 5


Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
ВМ	6.82	151.44		144.62	
TP1	4.92	151.19	5.17	146.27	
TP2	5.69	148.63	8.25	142.94	
BM1	1.90	148.58	1.95	146.68	
TP3	3.02	148.36	3.24	145.34	
TP4	5.57	148.48	5.45	142.91	
BM2	5.16	148.13	5.51	142.97	
	4.07	440.00		444.85	
TP5	4.93	149.28	3.78	144.35	
TPC	4.40	140 5 8	4.40	14516	
TP6	4.42	149.58	4.12	145.16	
ВМ3	4.65	149.22	5.01	144.57	
	4.00	170.22	5.01	1-1-1.07	
TP7	3.72	148.56	4.38	144.84	
	0.72		-1.00		

Sal Bei	bii	ne h	۱L ا	۲.) ام	żr c	οι	ıр													w						0	20	2	1 10
		i i	L	50	61	9									÷	_				-			_			4	<u> 2</u> -	20	2-	
															F	10	t	a	na	10	Cle	ea	r							
	-	c	12			47			-						1		c			16		-	N		,	~			+	
US Se		5		2IV 714	1	# e	22 12	(-(4)	-0	n	c.	I۷	10	n.	10	γ	9	. (Ž.	15) 1	=.	N	۰.۷	۷.	C	or	'n.		_
56	c.	Э	; 1	14	2ľ	۷;	ĸ	41	v																					
+																												$\left \right $		-
+																												\square	+	
60	d	50.0	-11			6	6	: 1	0	15	ייב	_	21	+	2	- 14		~		5	N		_	C	~					_
N.1													0	~~	זט	IVV	0	00	11	rı	I'N	• •		5		n,				
11.1	۷.	79	,	r I		•	74	•	26	υ.	C																			
+									_																			\vdash	+	-
+																													1	
+																														_
1" 5	Эt	e	el	a	ĸle	e i	n	9	E	. (Co	rı	1.;	Ν	".	W	. 1	4;	٨	1.1	N.	1/2	۲;	9	ec	•	3			
+																	Η											\vdash	+	-
_																														
+																														
+																												$\left \right $		-
60	d	na	ail	i		N.	9	io	e	15	5"	h	ic	ka	r	1	re	ee	i	h :	6.	E	. (Cd	pri	h:				
S.E	Ē.	1/4	: 1	N.	Ŵ	. 1	4:	e	e	с.	3		-							-		-			-	-,		\vdash	+	
-			,	-			.,	-	-		-																			
+																	\square											H		-

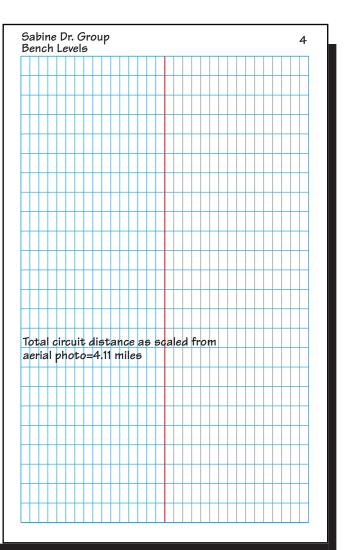
Part 645 National Engineering Handbook

Sample D-10 Engineering notes for bench level survey—Sheet 3 of 5


Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		148.56			
TP8	4.02	147.17	5.41	143.15	
TP9	4.31	146.62	4.86	142.31	
TP10	4.56	146.20	4.98	141.64	
TP11	4.65	145.84	5.01	141.19	
BM4	4.72	145.60	4.96	140.88	
TP12	4.82	145.21	5.21	140.39	
TP13	4.61	144.35	5.47	139.74	
TP14	4.41	143.50	5.26	139.09	
BM5	4.26	142.97	4.79	138.71	
TP15	4.75	142.71	5.01	137.96	
TP16	3.95	141.01	5.65	137.06	

Part 645 National Engineering Handbook

Sample D-10 Engineering notes for bench level survey—Sheet 4 of 5

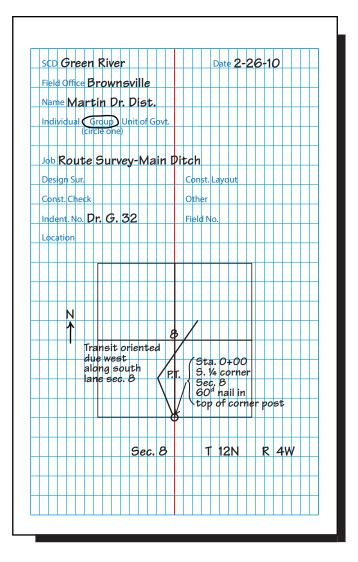

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
		141.01			
TP17	4.12	140.33	4.80	136.21	
	4.05	450.05		155 10	
TP18	4.23	139.65	4.91	135.42	
TP19	3.93	138.94	4.64	135.01	
BM6	4.12	138.38	4.68	134.26	
TP20	4.73	139.25	7.00	134.52	
1720	4.73	139.25	3.86	134.92	
TP21	4.68	140.12	3.81	135.44	
TP22	4.87	140.98	4.01	136.11	
TP23	4.79	141.79	3.98	137.00	
TP24	4.83	142.55	4.07	137.72	
TP25	4.43	142.86	4.12	138.43	
TP26	4.63	143.36	4.13	138.73	

Part 645 National Engineering Handbook

Sample D-10 Engineering notes for bench level survey—Sheet 5 of 5

Sta.	B.S.	H.I.	F.S. -or Grade Rod	Elev. or Planned Elev.	
		143.36			
TP27	4.54	144.01	3.89	139.47	
TP28	4.64	144.87	3.78	140.23	
TP29	4.51	145.63	3.75	141.12	
TP30	4.44	146.54	3.53	142.10	
TP31	4.40	147.66	3.28	143.26	
BM62			3.09	144.57	
٤BS	171.75	٤FS	171.80		
	171.80	Cor	rect elev. BM 62=	144.62	
-0	000.05		Diff. =	-0.05	ОК
		Allowa	ble error =	.1√м	
			=	.1\/4.11	
			=	.203	

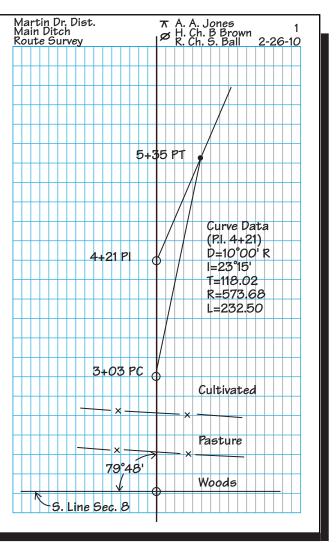
Part 645 National Engineering Handbook


Sample D-11 Engineering notes for route survey—Sheet 1 of 3

Engineering notes for route survey

These notes illustrate the format of a location or route survey by deflection angles.

The columns Deflection Angle and Double Deflection Angle are for the recording of observed values. Onehalf of the Double Deflection Angle is recorded in the column headed Calculated Deflection Angle.


It will be noted that curves were calculated and staked as the survey progressed. This requires experienced personnel, but if it is not done, it is necessary to restation the line after the curves are staked.

Part 645 National Engineering Handbook

Sample D-11 Engineering notes for route survey—Sheet 2 of 3

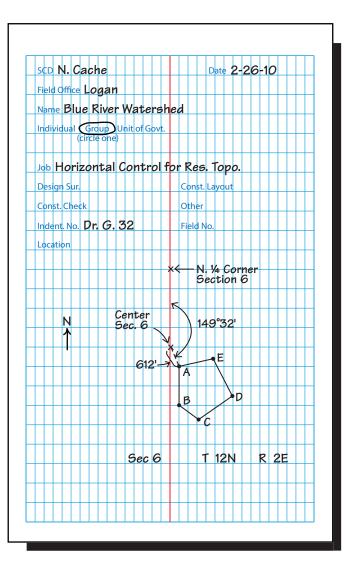
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
	Def<	Dbl Def. <	Cal. Def. <	Mag. Bearing	Point
6+00				N13°03'E	Line Stake P.O.T.
5+35.5	11°37.5'				P.T.
5+00	9°51'				P.O.C.
4+50	7°21'				P.O.C.
4+47					W. Line SE 1/4 Sec. 8
0 4+21	23°14'R	46°30'R	23°15'R		P.I.
4+00	4°51'				P.O.C.
3+50	2°21'				P.O.C.
0 3+03					P.C.
2+00					Fence
1+00				N10°12'W	Fence
⊙ 0+00					

Part 645 National Engineering Handbook

Sample D-11 Engineering notes for route survey—Sheet 3 of 3

			ES or	Elev. or	
Sta.	B.S.	H.I.	F.S. or Grade Rod	LIEV.	
	Def<	Dbl Def. <	Cal. Def. <	Ma. Bearing	Point
				Dearing	Line Stake
	6.				
\sim	00	ntinue Sı	Irvey to E	na	~~~~~
14+51					Pipeline
				N13°03E	
0 14.02					P.O.T.
11+48					R.O.W. Fence S.H. 20
					Lo
11+08					Edge Conc. Slab S.H. 20
					<u>51ab 5.11. 2</u> 0
10+88					Edge Conc. Slab S.H. 20
10+00					51ab 5.H. 20
10.40					R.O.W.
10+48					Fence S.H. 20
					Line
9+00					Line Stake
					Line
8+00					Stake
7+00					Line Stake
				N13°03E	

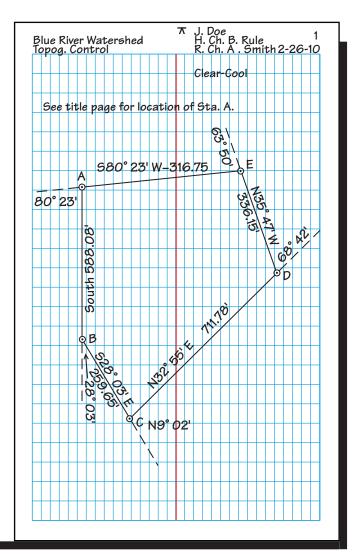
Part 645 National Engineering Handbook


Sample D-12 Engineering notes for closed traverse—Sheet 1 of 3

Engineering notes for closed traverse

These notes illustrate the format for a closed traverse by the deflection angle method. The traverse is to serve as horizontal control for a topographic survey of a reservoir site.

Transit station elevations will be established by a bench level survey from a permanent bench mark. Locations and elevations of pertinent topographic features will then be obtained with the transit by means of horizontal and vertical angles and stadia or chained distances.


See sample D–13 for a method of obtaining all needed information during one operation.

Part 645 National Engineering Handbook

Sample D-12 Engineering notes for closed traverse—Sheet 2 of 3

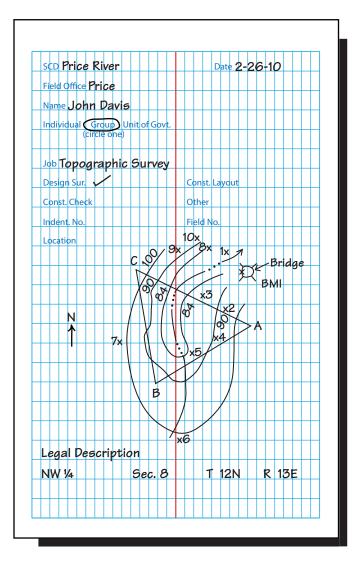
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
	Def<	Dbl Def. <	Cal. Def. <	Hor. Dist.	Mag. Br.
А					
				588.08'	South
В	28°02'L	56°06'L	28°03'L		
				259.65'	528°03'8
С	119°02'L	238°04'l	119°02'L		
				711.78'	N32°5'E
D	68°41'L	137°24'L	68°42'L		
				336.15'	N35°47'V
E	63°51'L	127°40'L	63°50'L		
	0.0%0.4%		0.0%071	316.75'	580°23'V
A	80°24'L	160°46'L	80°23'L		
2	_				South
В					
	_				
	_				

Part 645 National Engineering Handbook

Sample D-12 Engineering notes for closed traverse—Sheet 3 of 3

Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.	
	Ch	eck for ai		on	
	Ch	CONTOL A	igulai ci i		
EAB=	99°37'				
ABC=	151°57'	≤ int.	angles=	n-2(180°)
BCD=	60°58'		=	n-2(180°)
CDE=	111°1 <i>8</i> '		=	3(180)
DEA=	116°10'		=	540°	
€ =	537°180	=540° 0	к		
	Check	for horiz	ontal clo	sure.	
	Lat	tude and	l departu	res	
Course	A–B	B-C	C-D	D-E	E–A
Bearing	South	928°03'E	N32°55'E	N35°47'W	580°23'W
Lat.	588.08'	229.152	597.510	272.695	52.196
Cosine		.88254	.83946	.81123	.16706
Dist.	588.08'	259.65'	711.78'	336.15'	316.75'
Sine		.47024	.54342	.58472	.98595
Dep.	0.0	122.098	386.795	196.554	312.300

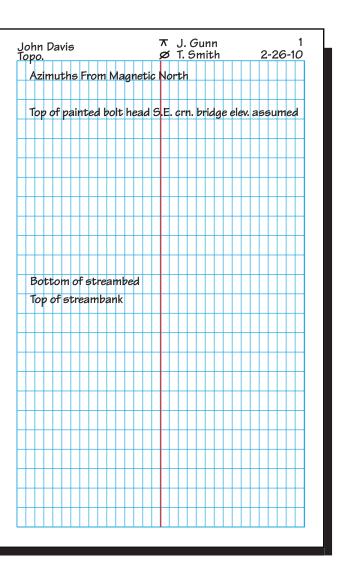
	po																												
	\$ 87	N 70		1						N '0		5			Ę	\$ 50	۱٤ 8	۱ ۶.٤	39	•			5	₹ 0	N 8	. <i>e</i>	5		
					<u>).</u>	24	p.	~	/.	\ \$ }	<u>ل</u> ر، ۲	1																	
		0000	00.0	/	\langle	/	/).(20	6)	2	+(0	.0)4	·)²	2	=	0	2.	0	7:	2	
				< To B											þe				te	r			_	2	2,;	21	2	.4	1
				¥					E	rr	or	0	f	cl	09	5u	re	:					-		0.	0	72	2	
	-																					=	=		30	Э,	72	28	,
				M	le	a	ъu	re	,	0	f	а	<i>cc</i>	u	ra	c	,		_				1	: :	30	р,	72	2.8	,
																			_								С	к	
																					<u> </u>		ck						
																			4								9L	2	
	+																_		+			-	. t			1			-
-	+															_	_		+	_	2/	2	61	/10	2			_	
																			1										


Part 645 National Engineering Handbook

Sample D-13 Engineering notes for topographic survey with transit—Sheet 1 of 2

Engineering notes for topographic survey with transit

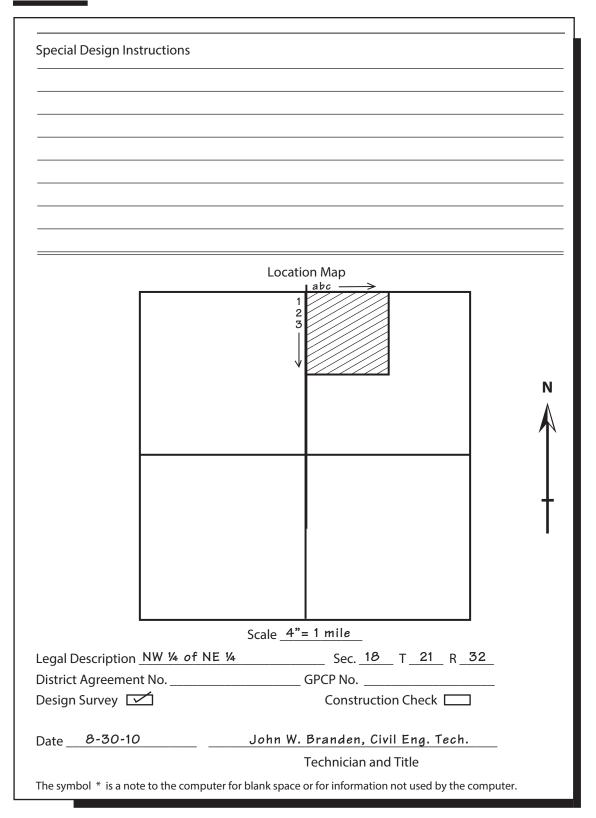
These notes illustrate a method of running a closed traverse and obtaining topographic information in one operation. The traverse can be checked for closure as shown in sample D-12.


Direct leveling was done wherever possible. Vertical angles were used only where the observed point was above the instrument, too far below it, or where the line of sight, with vertical arm at zero, was obscured by brush.

Part 645 National Engineering Handbook

Sample D-13 Engineering notes for topographic survey with transit—Sheet 2 of 2

Sta.	Azimuth	Horizontal Distance	Foresight	Elevation Elev. or Planned	Elevation
			G rade Ro d	Planned Elev.	LIEVALION
⊼ at	A; Elev. of	A=101.6	F.S.; H.I.	=106.4	
BM1	301°00	281	6.4	-1.6	100.00
1	323°30	388	^{0°} 10.4	-5.6	96.0
2	269°45	307	°⁄9.6	-4.8	96.8
3	269°50	453	-1°26 4.8	-11.3	90.3
4	240°00	386	0° 9.5	-4.7	96.9
В	223°40	752	°/10.9	-6.1	95.5
⊤at	B; Elev. of	B=95.5	F.S.; H.I.=	99.9	
А	43°40	752	+0°28 6.4	+6.1	101.6
5	24°50	83-'	-4°26/10.4	-10.4	85.1
6	16190	445	+0°31 9.6	+4.0	99.5
7	275°40	290	0°52 4.8	+4.4	99.9
С	33315	722	0°52 9.5	+10.9	106.4
⊤ at	C; Elev. of	C=106.4	F.S.; H.I.	=110.9	
В	15315	72.	-0°52 4.5	-10.9	95.5
8	92°25	228 ⁻²	-4°50 4.5	-19.0	87.4
9	45°40	190	-2°13 4.5	-7.4	99.0
10	22°20	157	-2°44 4.5	-7.5	98.9
А	96°48	850	0° 9.3	-4.8	101.6



Part 645 National Engineering Handbook

Sample D-14 Plane surface design—Sheet 1 of 3

				I	Plane		face ble 1	Desi	ign						
												Sh	eet_	<u>1_</u> of	2
Title= Ralph	ı Krey	, Gar	den (City, I	Kans	as									
Title= Field	No. 2	. NE	40 a	cres	in SE	18-2	21-32								
BM= <u>50.0</u>									at st	a N 1	4				
BS= <u>5.3</u> HI= 55.3			+	*											
*															
GRID= <u>100</u> *	x 100														
	Α	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	
X+(A,1)	5.6	3.7	2.9	2.7	2.6	3.2	4.2	4.9	5.0	4.9	4.5	3.9	3.2	1.6	
X+(A,2)	5.5	4.1	3.3	2.7	3.0	4.0	4.7	5.4	5.5	5.5	5.2	5.0	4.6	3.9	
X+(A,3)	5.5	3.9	3.4	3.0	3.8	5.0	5.7	6.1	6.3	6.9	5.5	5.4	4.9	4.1	
X+(A,4)	5.3	3.6	3.1	3.4	4.6	5.7	6.4	6.3	6.5	6.2	5.4	5.7	5.2	4.1	
X+(A,5)	5.1	3.7	3.1	3.7	5.2	6.3	6.9	7.1	7.1	6.2	5.4	5.3	5.0	3.3	
X+(A,6)	5.0	3.6	3.4	4.1	5.8	6.9	7.7	7.8	7.5	6.6	5.4	5.2	4.0	1.0	
X+(A,7)	5.1	3.9	3.9	4.3	6.1	7.4	8.8	9.1	8.1	7.0	5.3	4.1	2.4	0.3	
X+(A,8)	5.8	4.3	4.1	4.6	5.9	7.4	9.1	9.3	9.2	7.4	5.3	3.5	1.5	0.3	
X+(A,9)	6.1	4.4	4.3	4.5	5.7	7.0	8.6	8.6	9.0	8.3	6.3	4.1	1.5	0.5	
X+(A,10)	5.8	4.6	4.3	4.9	5.3	6.6	7.8	8.6	9.3	8.7	7.3	4.8	3.5	2.4	
X+(A,11)	5.3	4.3	4.0	4.8	5.1	5.9	7.1	7.9	8.9	8.8	7.5	5.9	4.4	3.1	
X+(A,12)	4.7	4.0	3.8	4.7	5.2	5.8	6.3	7.8	8.4	8.5	7.7	6.5	5.1	3.8	
X+(A,13)	4.0	3.6	3.4	4.6	5.2	5.7	6.3	7.1	7.9	7.9	7.5	6.9	5.4	4.5	
X+(A,14)	3.3	3.1	3.1	3.8	5.2	5.6	6.0	6.5	7.7	8.0	7.8	7.1	5.9	5.1	

Sample D-14 Plane surface design—Sheet 2 of 3

Part 645 National Engineering Handbook

Sample D-14 Plane surface design—Sheet 3 of 3

Plane Surface Design Table 2	
* Design Requirements	Sheet <u>2</u> of <u>2</u>
* Title <u>Ralph Krey, Run No. 1</u>	
* Hundredth=1 Origin= <u>Upper Left</u> C/F Ratio= 1.50 Slope (X)= -0.1, -0.1 Slope (Y)= +0.1, +0.7 * Slope to South Bench = (A,1) (N,1) (N,14) (A,14) Borrow = n.a. Waste = n.a. Waste = n.a. Maxelev (,) = n.a. Minelev (,) = n.a. Go, Detail * Title <u>Ralph Krey, Run No. 2</u> Slope (X)= +0.1, -0.1 Slope (Y)= +0.1, +0.7 * Slope to North	
Bench (A,1) (N,1) (N,14) (A,14) Go, Detail	
Title <u>Ralph Krey, Run No. 2</u> Slope (X)=_+0.1, -0.1	
Slope (Y)= <u>+0.1, +0.7</u> * Slope to West Bench (A,1) (N,1) (N,14) (A,14)	
Go, Detail *	
Title Slope (X)= Slope (Y)=	
Go, Detail End Job * Cross out all fringe points in data grid after entering in fringe areas.	
Cross out all computer command lines not used.	

Part 645 National Engineering Handbook

Standards for project and larger group jobs

Standard staking and notekeeping procedures are shown for representative type structures and portions of structures. Every situation is not covered. The samples show format and procedure in sufficient detail for the field engineer or survey party chief to apply them to the particular job. Construction staking must be consistent with contract provisions, and some of the samples may represent portions that are the responsibility of the contractor.

Unless otherwise specified, basic staking for embankments and excavations includes centerline, slope (toe of slope or edge of cut), and offset reference stakes with hubs at each station and more frequently on curves along the axis of the embankment or excavation. Stakes at significant breaks in topography or changes in section of the planned work are also included. Basic staking for structures includes alignment and grade along the principal axis and may include offset stakes for linear structures, such as a principal spillway through a dam.

Computations are closely related to notekeeping. These samples can be used to compute quantities directly from the field notes. Placing the cut or fill above the distance from centerline or reference point facilitates direct computations. A sample plotted dam cross section and computation are shown.

Samples D–15 through D–18 show components of a typical floodwater retarding structure. These exhibits are referred to in the presentation of the sample field notes for layout and also for calculations. Although these figures and the field notes presented are for an earth dam, the content, procedures, and completeness of notekeeping are directly applicable to other major construction work.

Elevations for earthwork are usually computed to the nearest one-tenth (0.1) foot. Where grades or control elevations are not shown on the drawings, sufficient information for rough grading may be established by scaled measurements taken from the drawings.

A standard practice is to set grades for the various elements of structures to the nearest hundredth (0.01) of a foot.

All construction stakes should be set and marked to show finish elevation. Additional information may

be added to stakes and notes for subgrades or other specific construction datums as needed.

Engineering notes—Construction stakeout

Sample D–24 illustrates a format for stakeout notes for dams or other embankments. The elevations and structure dimensions illustrated are from plan data in samples D–15 through D–18 and field notebook sample D–20.

The example shows the original cross section and embankment staking. The foundation was stripped and a second cross section was taken concurrently with setting the cutoff trench cut stakes. This is an optional procedure and, in some cases, one cross section will be sufficient. The (T) denotes the edge (toe) of fill or cut.

Sample D–24 illustrates a format that may be used for recording the layout notes for the construction of principal spillways for flood control dams and can also be readily adapted for use in laying out other types of closed conduits or culverts.

Sample D–25 illustrates a format that may be used for recording notes for the cross sections and the layout of the auxiliary spillway or other earthwork. The work may consist of excavation or sections that combine excavation and embankment.

The layout, including curve data, and the elevations for this example were taken from sample D–22. Simple curves are frequently required in the layout of embankments, excavations, or elements of structures. Sample D–35 shows how a correction for curvature is made for an excavation between two asymmetrical sections located in the curve of an auxiliary spillway.

Stationing for the project should be continued along the centerline of the curve at the time of stakeout, and these stations should be used as control points for cross sections and the staking of the structure limits. Transverse measurements are made normal to the tangent to the curve at the point under consideration. This measurement line parallels an imaginary line that passes through the centerline station and the reference or radius point for the curve.

Plotting and considerations

Sample D–26 shows the plotted cross section of dam centerline station 15+10. Fill height and distance from the centerline are the parameters used for plotting.

Appendix D

Part 645 National Engineering Handbook

Calculations should normally be made directly from field notes. It may be necessary in cases of complex geometry to plot cross sections to visualize the element. However, copying numbers and plotting cross sections should be kept to the minimum. They may be used were appropriate. Sample D–27 shows a convenient way of tabulating field notes for calculations where it is not convenient to compute directly from the field notebook.

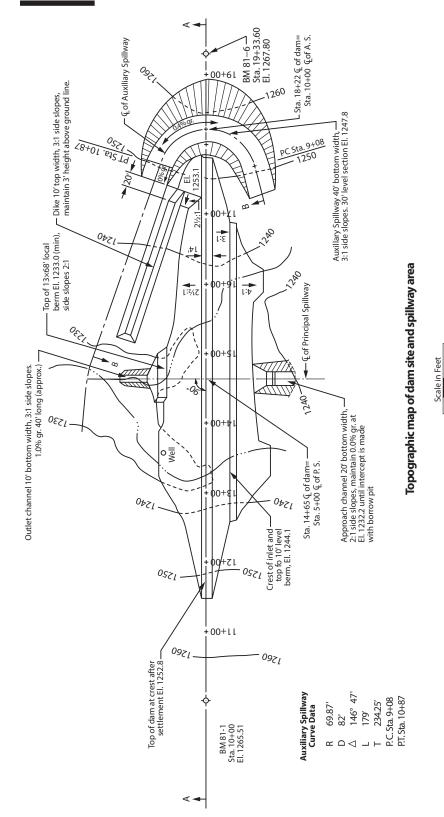
Setting and marking stakes

Sample D–28 shows an example for staking embankments. This is the same cross section as recorded on sample D–23 shows an example for staking an open channel spillway. This is the same cross section as recorded for auxiliary spillway station 9+12 on sample D–25. The berm was added to the sketch to show the procedure (not in notes.) Stake location and markings must convey the necessary information. The examples show proven methods but may be varied to accomplish this objective.

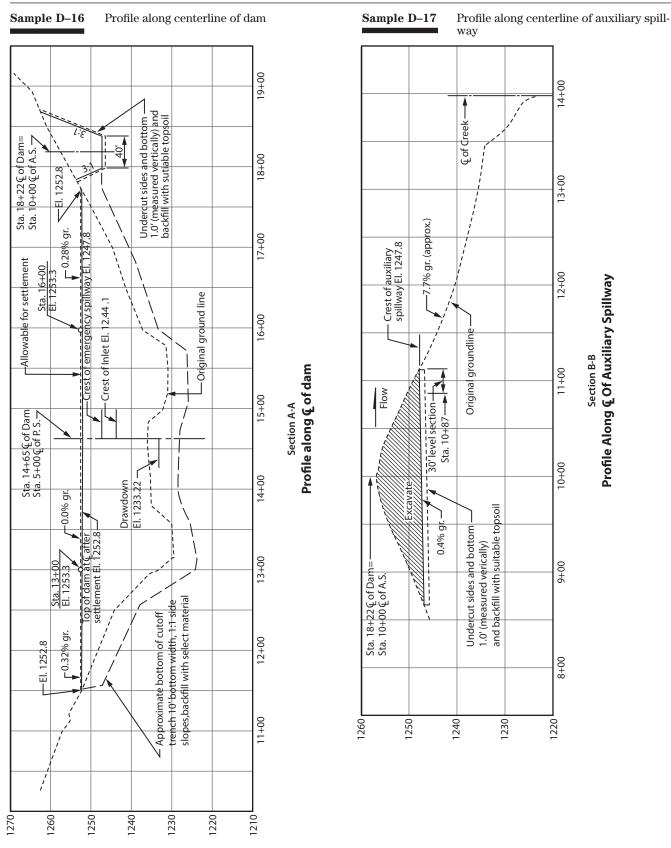
Sample D–30 shows stake marking for various purposes applicable to construction. Samples D–31, D–32, and D–33 show methods of staking various other structures.

Engineering notes—checking completed work

Sample D–34 shows an example of recording a check of completed construction and, although an embankment is shown, the principles are applicable for all construction work.

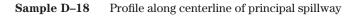

Some technicians develop a checkout schedule similar to the stakeout schedule based on constructed fill height to the dam centerline. Use of such schedules may be appropriate for large complex dams. The notes shown, along with good visual judgment, should be sufficient for the ordinary dam. A plot of the planned embankment section overlain with the constructed cross section can also be made to visually compare the two.

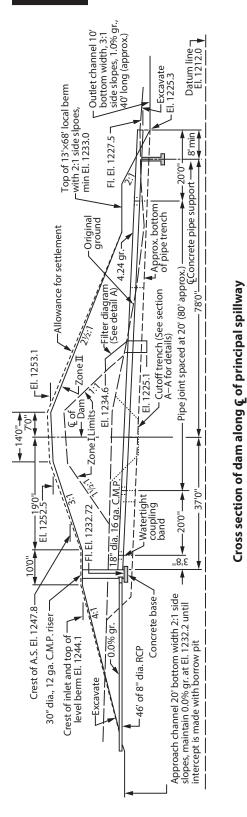
8


50

Sample D–15

Topographic map of dam site and spillway area




Part 645 National Engineering Handbook

(210-VI-NEH, Amend. 52, October 2018

Part 645 National Engineering Handbook

(Sta. 14+65)

Part 645 National Engineering Handbook

BM level circuit—Sheet 1 of 2 Sample D-19

	В	M Level Ci	ircuit												k k		J N	lcV bea	ick so	ker n			
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.																			_
BM81-1	1.75	1267.26		1265.11		pp c . of														10.	۲O	2	
TP	0.22	1255.33	12.15	1255.11	Ŷ	. 01			94								" P						
TP	1.15	12.43.70	12.78	1242.55																			
TP	9.17	1240.51	12.36	1231.34	To	op c	of :	501	ıtł	1 5	tee	l ha	and	lle	on	we	ell (cap	,				
TP	11.61	1250.75	1.37	1239.14																			
TP	12.60	1262.29	0.66	1250.09																			
TP	8.51	1296.54	1.66	1261.03																			
3M81-6	1.29	1269.09	1.74	1267.80		pp c am							w	st	eel	pc	st	on	I Q	of			
TP	0.35	1257.34	12.10	1256.99																			
TP	1.54	12.46.88	12.00	1245.34									+										
TP	9.77	1247.73	8.92	1237.96	Tc	op c	of :	ste	el	po	st												
TP	11.11	1258.26	0.58	1247.15																			

Part 645 National Engineering Handbook

Sample D-19 BM level circuit—Sheet 2 of 2

								rcuit	M Level C	В	
							Elev. or Planned Elev.	F.S. or Grade Rod	H.I.	B.S.	Sta.
									1258.26		
					_						
om north end of da	nstream from nor	ost downst	ate pos	pp g	-		1256.63	1.63	1266.77	10.14	BM81-2
					-	0.01 error	1265.52	1.25			BM81-1
hecked: H.H. O	Checked				_						
7-24-10	7				_						
					-						
					-						
					-						
					-	F [-!	1 but is wi	ande 0 0	annon ave	lf tha	Nota
					-	fthe	recision p	for the p	ble error	allowa	
					-	fthe	recision o hould be a	for the p vations s	ble error y, the elev	allowa	
						fthe	recision o hould be a	for the p ations s	able error y, the elev	allowa	
					-	fthe	recision o hould be a	for the p ations s	ble error y, the elev	allowa	
						fthe	recision b hould be a	for the p ations s	able error y, the elev	allowa	
						fthe	recision o hould be a	for the p ations s	able error y, the elev	allowa	
						fthe	recision o hould be a	for the p ations s	able error y, the elev	allowa	
						fthe	recision o hould be a	for the p ations s	ble error y, the elev	allowa	
						fthe	recision o hould be a	for the p rations s	ble error y, the elev	allowa	

Part 645 National Engineering Handbook

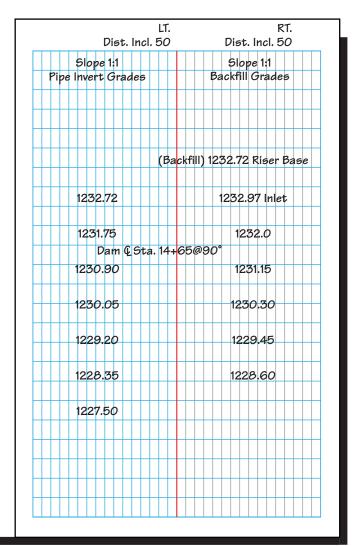
Sample D–20

Embankment stakeout schedule—Sheet 1 of 2

		Stakeout			
Sta.	- B.S.	-H.t.	F.S. or G rade Rod	Elev. or Planned Elev.	Settlement
		BERM			
	Elev.	Settlemen	; Const. elev.		
11+51				1252. <i>8</i>	0.0
11+56					0.0
12+56					0.3
13+00	1244.1	0.3	1244.4		0.5
13+15		0.3	1244.4		0.5
13+60		0.3	1244.4		0.5
13+80		0.2	1244.3		0.5
14+00		0.2	1244.3		0.5
14+75		0.2	1244.3		0.5
15+10		0.2	1244.3		0.5
	v			\checkmark	
15+75	1244.1	.02	1244.3	1252.8	0.5

Constructed	Constructed
Elev.	Core Trench Elev.
1252.8	End of dam
1252.8	1247.3
1253.1	1240.0 Begin berm
1253.3	1224.0
1253.3	1224.0
1253.3	Ground 1226.0 core break
1253.3	1227.5 Ground break
1253.3	1229.0
1253.3	1228.6
1253.3	1226.5
1253.3	1226.5

Sample D-20


Embankment stakeout schedule—Sheet 2 of 2 $\,$

BERM BERM Elev. Settlem 244.1 0.2	-	Elev. or Planned Elev. 1252.8 1252.8	Settlement 0.5 0.2	Constructed Elev. 1253.3 1253.0	Constructed Core Trench Elev. 1233.5 1240.0 End b	
Elev. Settlem	ent Const. elev.	1252.8		1253.3	1233.5	
		1252.8				
244.1 0.2	1244.3	1252.8				
			0.2	1253.0	1240.0 End b	0.44
	_					erm
		1252.8	0.0	1252.8	1247,8	
			Image: Sector of the sector			

Part 645 National Engineering Handbook

Sample D-21 Principle spillway stakeout schedule

			t Schedul	Elev. or Planned	
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev.	
				Trench Bottom	
4+50				1237.0	
4+56				1231.0	
4+64				107.0.0	
4+04				1230.2	
4+86				1229.2	
5+00				1220.2	
5+06				1228.5	
5+26				1227.8	
5+46				1227.0	
5+66				1226.2	
				1005 7	
5+86				1225.3	

Part 645 National Engineering Handbook

Sample D–22

Auxiliary spillway stakeout schedule—Sheet 1 of 2

			r SPILLW/ t Schedul					Dist. Inc	LT. 1. 20		Dist.	Inc	R 1. 20
Sta.		- <u>++:</u>	F.S. or	Elev. or Planned Elev.									
	Defl.	Central		Elev. Design	Subgrade		6	lope 3:1			Slop	e 3:	1
	$ \rightarrow $	$ \rightarrow $	_					rve Data					
8+61				1246.8	1245.8								
				12 10.0	12 10:0		RP	17+52.1					
								69.87					
9+08PC	0°00'	0°00'		1247.0	1246.0			82°					
								146°47'					
								179'					
9+12	1°38'	3°17'		1247.1	1246.1			234.25					
								ita. 9+08					
							PIS	ta. 10+87					
9+37	11°53'	23°47'		1247.2	1246.2	-	Sta. 10-	-00 ES=18-	122 6 of	Dam			
9+62	22°08'	44°17'		1247.3	1246.3								
0.01													
9+87	32°23'	64°47'		1247.4	1246.4								
10+00		75°26'					Dam Ç						
10+12	42°38'	85°17'		1247.5	1246.5								
	1200												
10112													
10112													

Part 645 National Engineering Handbook

Sample D-22

Auxiliary spillway stakeout schedule—Sheet 2 of 2 $\,$

			SPILLWA Schedul	е									
Sta.		_ 	- F.S. or Grade Rod	Elev. or Planned Elev.				W	ING	DIKE			
	Defl.	Central		Design	Subgrade								
							E	lev.					_
10+37	52°53'	105°47'		1247.6	1246.6		12!	53.1		10 3:1	' Тор 55		_
10+62	63°08'	126°17'		1247.7	12.46.7		12!	53.1					
0+87PT	73°23'	146°47'		1247.8	1246.8		12!	53.1					
11+17				1247.8	1246.8		12!	53.1		en	d of to	opsoi	+
11+37				1245.3	Natural Ground		124	8.3					+
40.77								3 dike					+
12+37								ê					+
13+37								3	.0 Fil				+
13+47				Natural Ground				0	0 Fil				†

Part 645 National Engineering Handbook

Embankment stakeout notes—Sheet 1 of 2 Sample D-23

			NKMENT It Notes			Gr. Rd. Fill / Dist. Adj. fo Slope 2½:1 Settlement	Adj0.3 pr Berm	own LT.	Gr. Rd. Fi Slope 3:1 Berm	ll Adj.+0.3 & 4:1	U
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.		Settlement			Settleme	ent 0.2	
		1241.06 (1241.1)		Liev.	pg. 15			SETTLE	MENT O.	5	
						<u>F-23.6</u>				F-17.4	F
15+10			-11.7	1252.8	Fill	11.4	13.0	11.7	10.0	5.2	
			-12.2	1253.3	Const.	48.0	38.0	32.0	0.0	19.0	
							10			10	
						F-17.7	0.5. F	20.2 (T)	F-14.6	5./ F-14.2	
			-3.0	1244.1	Berm	5.5		.0	2.4	2.0	† †
			-3.2	1244.3	Const.	-67.0	F 19.7	-57.0	F 14.1-63		
							1 2.4	13:1	1		$\left \right $
							F-	18.2		F-13.7	
								6.0		1.5	
								37.0		93.8	
						Not	e: Fills	below tł	ne line use	d for con	101
							slop	e distan	ces.		1
										Checke	
										RE1	
										Y P . IO .	
										7-14-1	Ø

Part 645 National Engineering Handbook

Sample D–23

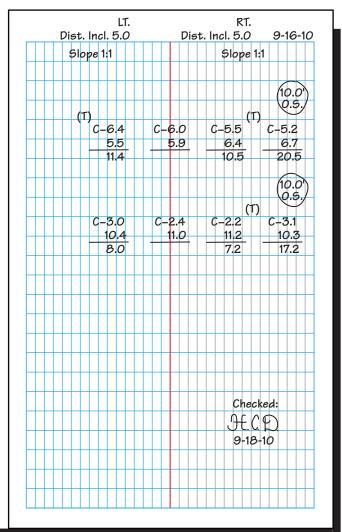
Embankment stakeout notes—Sheet 2 of 2 $\,$

		IKMENT A						~		-	.T.	D .		RT.	~
	Core	Trench St		Elev or				D	ist.	Incl. 5.	.0	Die	st. Ind	cl. 5.0	9-
Sta.	B.S.	H.I.	F.S. or Grade Rod	Planned Elev.				Slop	oe 1:1				SI	ope 1:1	
3M 81-7	0.15	1239.58		1239.43	pg. 3										
		(1239.6)			C–Book										
															5
									(T)				(T)		0.5
15 10			45.5							-24.2		-20.5	F	-19.0	
15+10			_13.7	1253.3			2.9 8.0	11.2 32.0		10.5		6.8	2 07	5.3 8–16.	<u>!</u> 3 1
						5	0.0	52.0		2.0-70	0 00	5-11.0	5 67.	0-10.	וכ
											Χ				
		Core T	rench							1	Ćore	Trenc	h Cut	; for S	take
						(†)									++ (
						-	20.2			F-24.		F-17.2		-15.6	<u>F-</u>
							6.5	7.4		10.9		3.5		1.9	0
						Į	57.0	56	.0	48.0		33.0	6	52.8	6
									2						
									0^ .5.)				/10	\mathbb{R}	
								- Y		-17.7		F-14.2	. (0.9	シ/┼┼	
			+13.1	1226.5	ОК					4.0		0.			
										67.0		73.8			
TP	5.28	1242.13	2.73	1236.85											
	0.20	12-72.10	2.70	1200.00			No					- 1 1 1		would	be
							+++	5	imila	ir to o	τner	cneck	OUT	10765.	
							\square							Chec	ked:
														B	B
														9-16	10

Part 645 National Engineering Handbook

Sample D-24 Principle

Principle spillway pipe trench stakeout notes—Sheet 1 of 2 $\,$

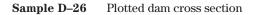

		RINCIPLE				Diet	LT. Incl. 5.0	r	RT. Dist. Incl. 5.0	~
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev. or Planned Elev.			pe 1:1		Slope	9 1:1
BM81-7	0.95	1240.38 (<u>1240.4</u>)		Elev. 1239.43	Pg. 3 C–Book					
4+50			+3.4	1237.0	C-Book	Begir	1 Cut	3.4		
										(
4+56			+9.4	1231.0	Cut		(T) C-5.5 3.9	C-5.5 3.9	<u>C-5.6</u> 3.8) C- 3
				1231.72	Backfill		10.5	0.0	10.6	21
						(т)			(1	, (
4+64			+10.2	1230.2			C-6.2 4.0	C-6.1 4.1	3.9	<i>C</i> -
				1233.0			11.2		11.3	

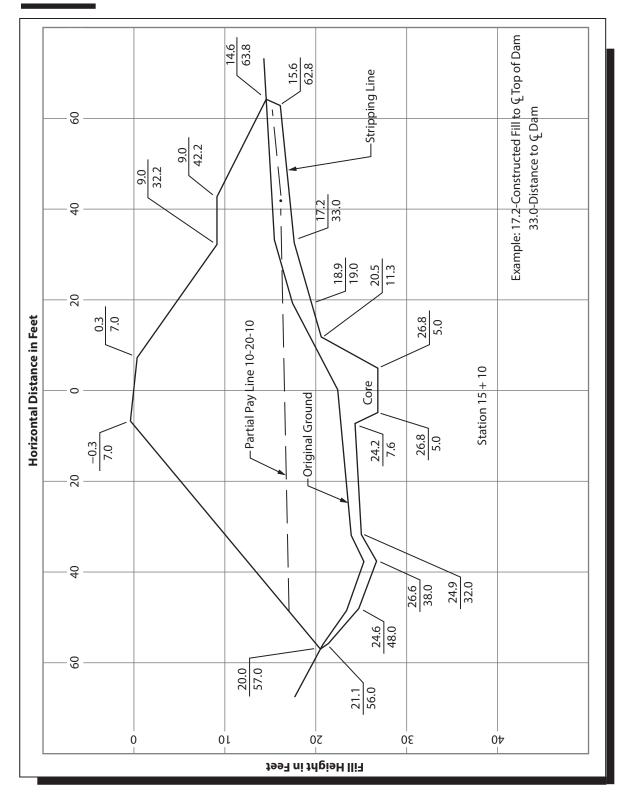
Part 645 National Engineering Handbook

Sample D-24

Principle spillway pipe trench stakeout notes—Sheet 2 of 2

		RINCIPLE Trench St			
CI.	•		F.S. or Grade Rod	Elev. or Planned	
Sta.	B.S.	H.I.	Grade Rod	Elev.	
		1240.38 (1240.4)			Pg. 27
		` <u> </u>			
5+06			+11.9	1228.5	
5400			<u>+11.0</u>	1231.2	
				1201.2	
5+46			+13.4	1227.0	
			+10.9	1229.5	
					0.00
BM81-7				1239.43	Closure
BS 8	0.95	FS 8	0.95		
		0.95			
		-0.95			
		0.00	Error in	closure	

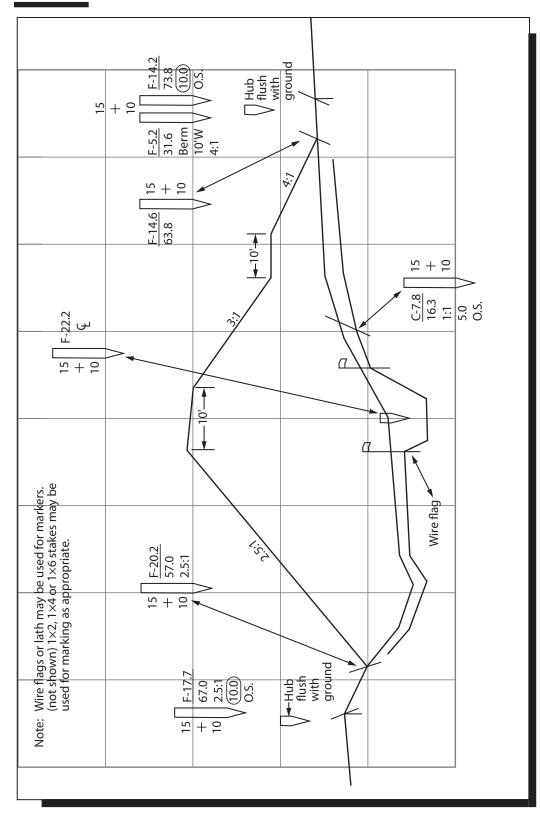



Part 645 National Engineering Handbook

Sample D-25 Auxiliary spillway stakeout notes

	A	UXILLAR)	' SPILLW it Notes			LT. Dist. Incl. 20	RT. Dist. Incl. 20 9-
Sta.	B.S.	H.I.	F.S. or Grade Rod	Elev or			
	0.5.	11.0	Grade Rod	Planned Elev.		\$lope 3:1	Slope 3:1
						3-16-10	★♥McVicker ★T Deal ØBea
BM81-6	0.38	1268.18		1267.80	Pg. 27		
		(1268.2)			C-Book	(T) _{C-1.0}	C-1.0 C-1.0 ^(T)
8+61			21.4	1246.8	Backfill	Entrance <u>21.4</u> 20.0	<u>21.4</u> <u>21.4</u> <u>0.0</u> <u>20.0</u>
			22.4	1245.8	Cut	20.0	20.0
						(10')	
						m m	C = 4.9 $C = 4.8$ (T) $C = 4$
9+08 PC			21.2	1247.0	Cut	<u> </u>	C-4.9 C-4.8 C-4 17.3 17.4 1
			22.2	1246.0		44.1 34.1	0.0 34.4 4
				40.474	Cut		
				1247.1	Cut	0.5.	
0.40				1246.1		C-4.7 C-4.8 (T) 17.4 17.3	C-5.0 C-5.3 ^(T) C-4
9+12						17.4 17.0	17,1 10.0 10
						44.4 34.4	0.0 35.9 4
							Checked:
							D.6.
							7-20-10

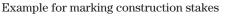
Part 645 National Engineering Handbook

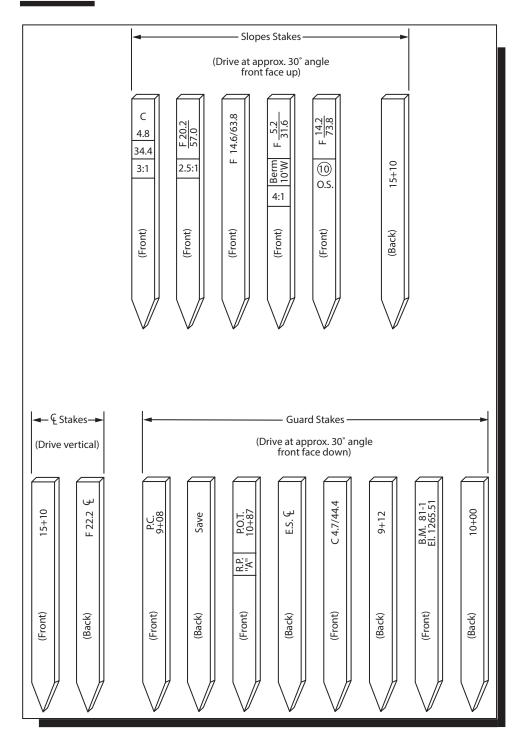

Part 645 National Engineering Handbook

$Sample \ D-27 \qquad {\rm Earthwork\ survey\ data\ and\ computation\ sheet}$

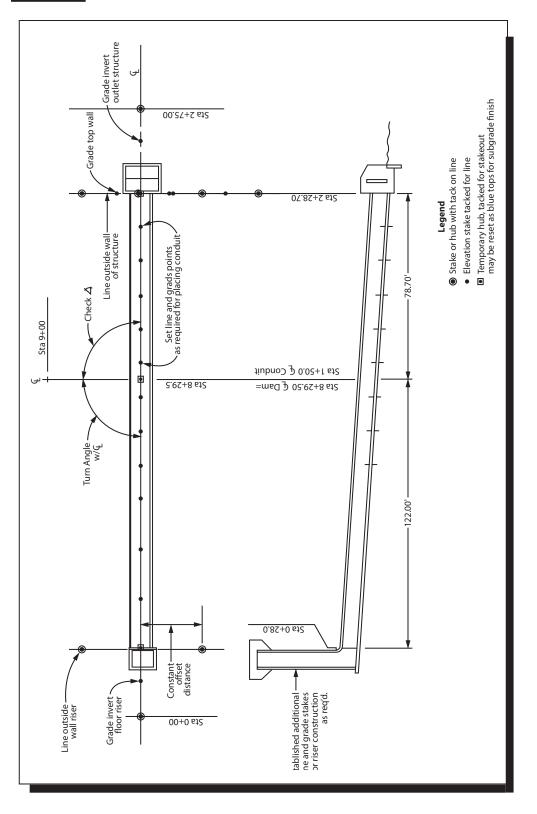
					Eart	Earthwork Survey Data and Computation Sheet	surve	ey Dat	a and	Comp	utatic	on She	et				
Locati	on Fra	Location Frankfort, Kansas	, Kans	30	Owner	ler			Cont	Williams Const. Co, Contractor_Brown Bros. Const. Co.	Williams Brown B	Const. (Contract	Contract No. NBV-IC-4764	V-IC-4	764
Water	shed N	Watershed North Black Vermillion	lack Ve	srmillio	Ę	Item	3-Eart	h Fill-	Emban	ikment	t Comp	uted by	Item 3-Earth Fill-Embankment Computed by G. Noll		Date 10-13	-13	2010
Sub-M	Sub-Watershed	p		Si	Site No.	81 Fin	Final Quantity _.	tity		Cu. yds	ds.	Chec	Checked by Hwa	Hwa	Date 10-13	-13	2010
Station			*				*			*	-		Double End Areas				
15+10	0.0	-0.3	20.2	21.1	24.6	26.6	24.9	24.2	26.8	26.8	20.5	18.9					
	0.0	-7.0+	-57.0+	-56.0+	-48.0+	-38.0+-	-32.0+	-7.6+	-5.0+	+5.0-	+11.3-	+19.0-					
	17.2	15.6	14.6	9.0	9.0	0.3	0.0						3289.83				
	+33.0-		+62.8-+63.8-	+42.2-	+32.2-	+7.0-	0.0										
*Provide	e appropria	*Provide appropriate headings for use of	js for use o	f offset or f baseline	E baseline												

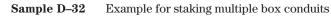
Part 645 National Engineering Handbook

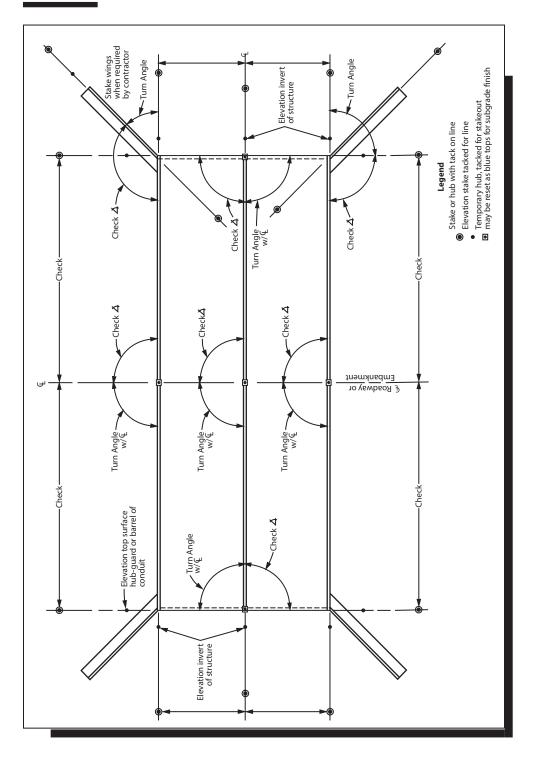

Part 645 National Engineering Handbook


Sample D–29 Example for staking excavations

Part 645 National Engineering Handbook

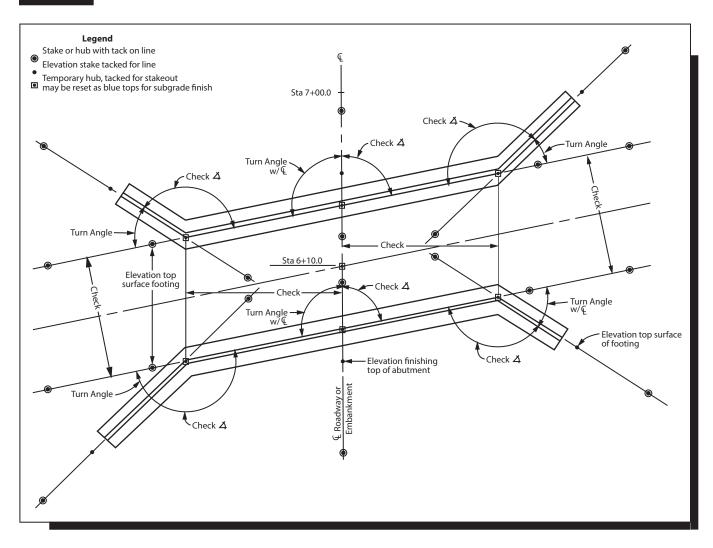

Sample D–30




Part 645 National Engineering Handbook

Sample D–31 Example for staking single barrel culverts or conduits

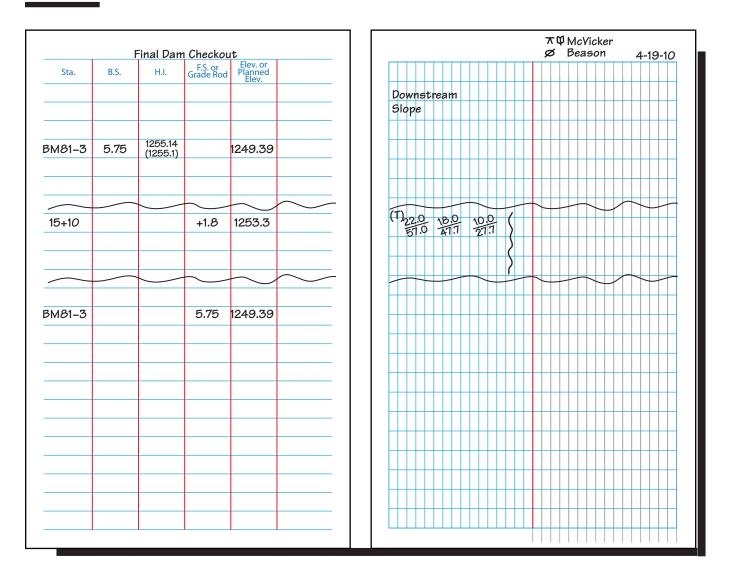
Part 645 National Engineering Handbook



Part 645 National Engineering Handbook

Example for staking cantilever abutments on skew angle

Part 645 National Engineering Handbook

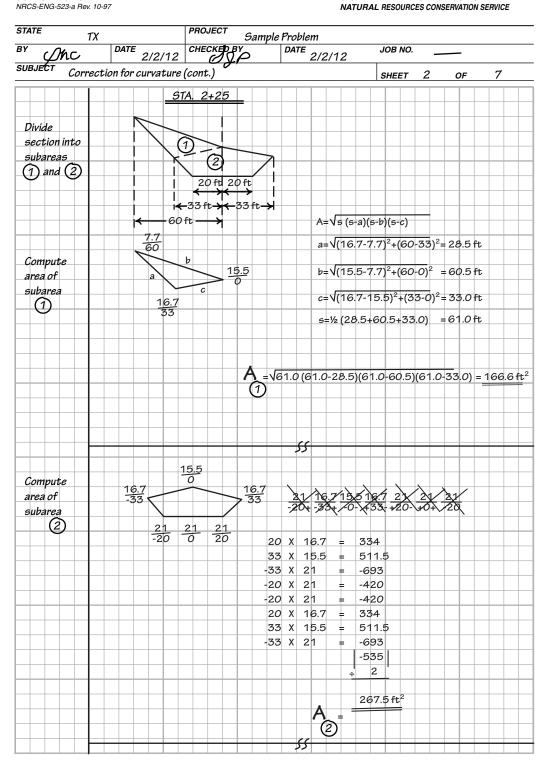

Sample D-34 Final dam checkout—sheet 1 of 2

Sta.	B.S.	H.I.	F.S. or Grade Rod	Planned	
		1256.66 (1256.7)		Elev.	
		,			
14+75			+3.4	1253.3	
15+10			+3.4	1253.3	
15+75			+3.4	1253.3	
16+00			+3.4	1253.3	
16+90			+3.7	1253.0	
17+78			+3.9	1252.8	
BM81-3			7.27	1249.39	
				1249.39	Corr. Elev No Erroi

				lcVicker eason	4-19-10
	Cre	own (Check		
			7' D.S.		
		-5	Need	FS	
	-0.3		+3.0	(Cro	wn tilt)
	3.1 3	3.0	3.7	3.7	
1.0 21.1	(3.1 3	5.1	3.7	3.7 8.3	12.2
21.1					54.4
	<u>}</u>				
			12.4	15.5 18	.0
3ee Page 63	· /		A2.2	155 1542 63	5.8
	3.1 3	5.1	3.7	3.6	
	3.1 3	5.1	3.7	3.6	
	3.4 3	.4	4.0	4.0	
	3.4 3	.4	4.0	4.0	
	3.6 3	.6	4.2	4.0	
Note:	Crown was	chec	ked at	most stat	tions.
				t represen	
	locations.				
		+++			

Part 645 National Engineering Handbook

Sample D-34 Final dam checkout—sheet 2 of 2

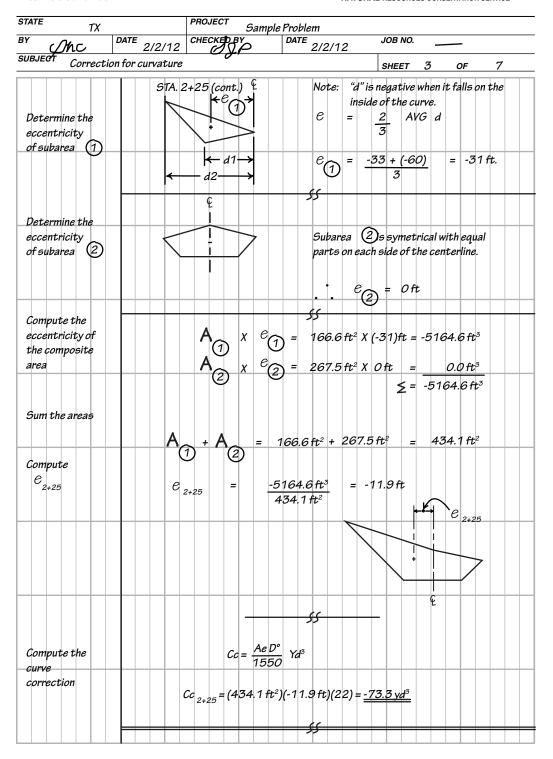


Sample D-35 Correction for curvature—sheet 1 of 7

COMPUTATION SHEET U. S. DEPARTMENT OF AGRICULTURE NRCS-ENG-523-a Rev. 10-97 NATURAL RESOURCES CONSERVATION SERVICE STATE PROJECT ТΧ Sample Problem DATE 2/2/12 BY CHECKED B JOB NO. DATE 2/2/12 \mathcal{D} Mc 1 SUBJECT Correction for curvature 7 1 SHEET OF Given: Vertical A 40-foot bottom spillway is being excavated with payment to values are grade rod be made on a cubic-yard basis. For computing the volume of readings excavation, the upper limits shall be the original ground surface as it exists prior to excavation, and the lower limits All values shown in feet shall be the neat line and grades shown on the drawings. The portion of the spillway between stations 2+25 and 2+88 is curved with 22 degrees of curvature. The limits of excavation are sketched below in Fig D-4. <u>Required:</u> Compute the true volume of excavation between stations 2+25 and 2+88. 1 <u>4.0</u> -74.0 1 9.7 0 2+88 $D^{\circ} = degree$ 15.3 40.0 ofcurvature 2+88 D° = 22° D° is the central angle 22.0 20.0 2.25 22.0 subtended by a chord of 100 ft 7.7 -60.0 15.5 0.0 £ $\frac{16.7}{33.0}$ D° 00 2+25 Figure D-4 Plan View and <u>21.0</u> -20.0 <u>21.0</u> 20.0 **Cross sections of Spillway**

Correction for curvature—sheet 2 of 7 Sample D-35

COMPUTATION SHEET



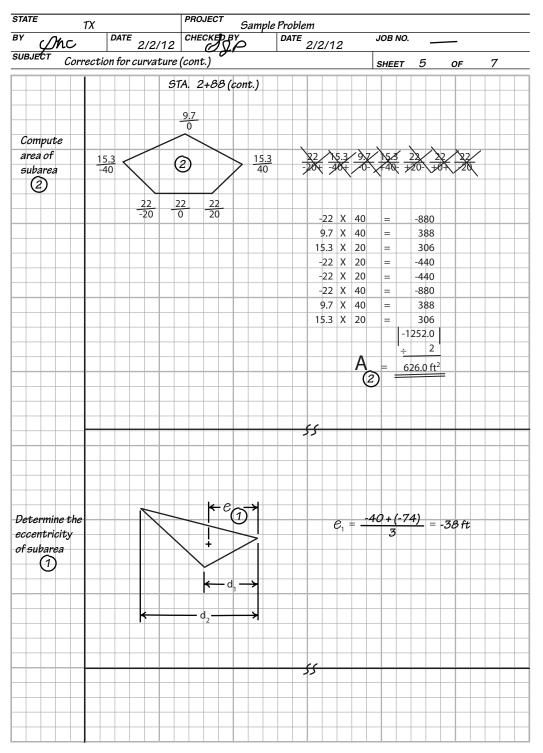
Part 645 National Engineering Handbook

Sample D-35 Correctio

Correction for curvature—sheet 3 of 7

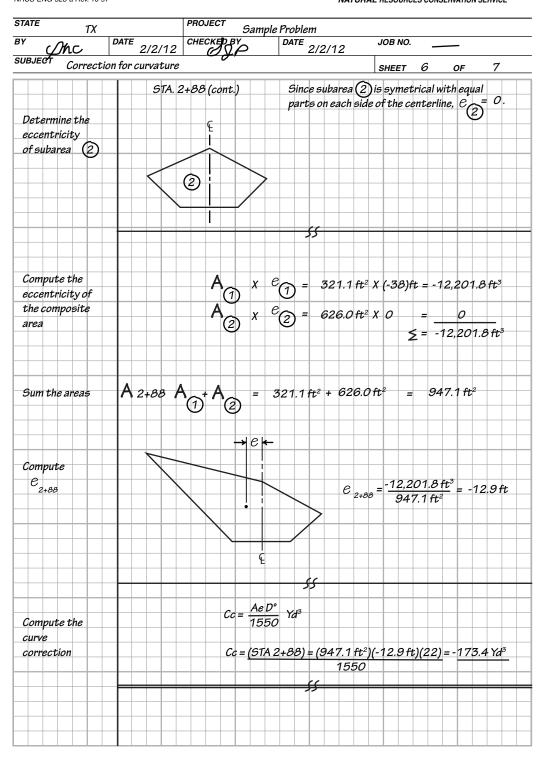
COMPUTATION SHEET NRCS-ENG-523-a Rev. 10-97

Sample D-35 Correction for curvature—sheet 4 of 7


COMPUTATION SHEET NRCS-ENG-523-a Rev. 10-97

STATE TX		PROJECT Sample	e Problem		
BY MC		снескер ву	DATE 2/2/12	JOB NO.	-
UBJECT Correc	tion for curvature			SHEET 4	0F 7
	GTA -	$2 \cdot 8 \cdot 8 \cdot (a + 1)$			
	51A.2	2+88(cont.)			
		$\leftarrow e_1 \rightarrow$			
Divide					
section into					
subareas					
(1) and (2)					
		40 ft →			
		74 ft ▶			
			55		
			, , , , , , , , , , , , , , , , , , , 		
	74	b	a=	$\sqrt{(74-40)^2+(15.3-4)^2}$	= 35.8 ft
			9.7		
Compute	a	1	b=	√(74-0) ² +(9.7-4) ²	= 74.2 ft
area of		C C	C=	√(40-0) ² +(15.3-9.7) ²	 = 40.4 ft
subarea		<u>15.3</u> 40		·½ (35.8+74.2+40.4)	
Ð			3-	(35.0174.2140.4)	- 75.2 10
		A =	75.2 (75.2-35.8)(7	75.2-74.2)(75.2-40.4)	= 321.1 ft ²
		ψ			
			<u> </u>		
	+ + + + + + + +				

Part 645 National Engineering Handbook


Correction for curvature—sheet 5 of 7 Sample D-35

COMPUTATION SHEET NRCS-ENG-523-a Rev. 10-97

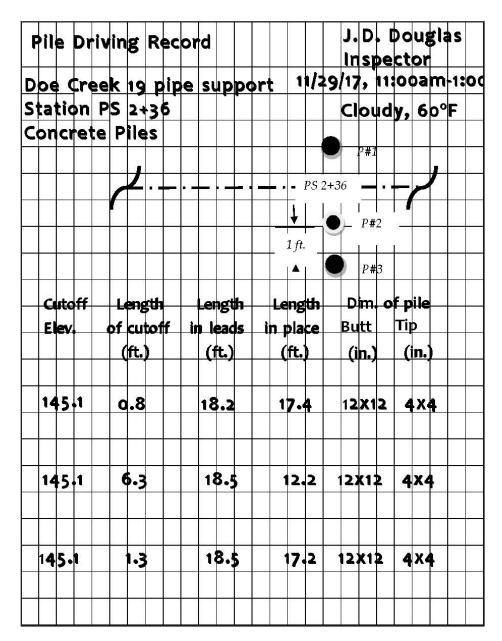
Sample D-35 Correction for curvature—sheet 6 of 7

COMPUTATION SHEET NRCS-ENG-523-a Rev. 10-97

Part 645 National Engineering Handbook

Sample D-35 Correction for curvature—sheet 7 of 7

COMPUTATION SHEET NRCS-ENG-523-a Rev. 10-97 U. S. DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE STATE PROJECT ТΧ Sample Problem снескер в DATE 2/2/12 BY JOB NO. DATE 2/2/12 6 mc SUBJECT Correction for curvature 7 7 SHEET OF STA. 2+25 to STA 2+88 Compute Cc = (2+25 to 2+88) = 2+25 + Cc 2+88 Yd³ curve correction 100 ft 2 between stations L=288 - 225 63 ft 73.3 Yd³ + (-174.4 Yd³ Cc = (2+25 to 2+88) = = -77.7 Yd³ 100 ft 2 Vcomputed 1 Compute the A2+25 + A2+88 2+25 to 2+88 27 volume between 2 stations without the correction for V computed = <u>63 ft</u> 434.1 ft² + 947.1 ft² = 1611.4 Yd³ curvature (2+25 to 2+88) 27-f 2 ₩ Compute the Vtrue computed + Cc (2+25 to 2+88) true volume (2+25 to 2+88) between stations Vtrue $1611.4 \text{ Yd}^3 + (-77.7 \text{ Yd}^3) = \frac{1533.7 \text{ Yd}^3}{1533.7 \text{ Yd}^3}$ (2+25 to 2+88) ----


Part 645 National Engineering Handbook

Sample D-36 Field Notes of Pile Driving Using Field Book—sheet 1 of 2

Station	B.S.	H.I.	F.S. or grade rod	Elev. or planned elev.	
	E rating	Average	Weight of		Piston
	(Ft-lb	(Blows	Striking	Stroke	Area
Hammer	/blow)	/min)	Parts(lbs.)	(ft)	(in2)
Vulcan #1	15000	60	5000	3	133.51
air/steam			Bearing	Formula	
Single-act			R = 2WH	/ (S+1.0)	
Blows @	Penetration		Computed	Top of	pile
Fall ht.	Total	Average	Bearing	After	driving
(#@ft.)	(in.)	(in./blow)	Numbers	rod	elevation
Pile #1				(11:00 am -	11:15 am)
5@3	3.0	0.60	18,750		
5@3	2.25	0.45	20,690		
5@3	1.75	0.35	22,222	11.62	145.9
Pile #2	Apparently	broke		(11:20 am -	11:30 am)
Pile # 3				(11:55 am -	12:15 am)
5@3	3.25	0.65	18,182		
5@3	2.75	0.55	19,355		
5@3	2.25	0.45	20,690		
5@3	2.0	0.40	21,429	11.13	146.4

Part 645 National Engineering Handbook

Sample D-36 Field Notes of Pile Driving Using Field Book—sheet 2 of 2

Part 645 National Engineering Handbook

Sample D-37 Field Notes of Test Pile Driving and Loading Using Field Book—sheet 1 of 4

Station B.S.		H.I.	F.S. or grade rod	Elev. or planned elev.	
Test Pile	Concrete				
Average	Pene-	Total	Blows	Elev.	
drop	tration	blows @	per	of pile	
(ft)	(ft)	ea. foot	foot	tip	
	0			150.38	
	1	0			
	2	5	5		
	3	12	7		
	4	20	8		
	5	30	10		
	•••	•••	•••		
	20	600	83		
	21	695	95		
	22	811	116		
	23	990	179	127.38	
	23.1	1,025		127.28	

Part 645 National Engineering Handbook

Sample D-37 Field Notes of Test Pile Driving and Loading Using Field Book—sheet 2 of 4

٦	e	S	t F	Pil	e	: C	Dri	vi	ng	R	ec	or	d).∣ sp			gla r	s		
D	Do	e	e C	ire	20	eł	x 1 8	8												19/		-				
									ati	or	n P	S :	2+3	36	1								0°	F		
ŀ	la	HA	nr	ne	er	r	na	ık€	e/n	ho	de	:	v	ul	ca	n-l	Mo	əd	el-	1						
٦	y	p	e	of		ha	am	m	er	•			S	in	gle	e a	ct	ioi	n, :	ste	ar	n-	air			
٧	Ne	e	ig	ht	(of	h	an	hm	ner	:				00											
												nι			60											-
									36																	
									S I			g'	۴E	":		15	,0	00	ft	-lt	s					
									ota						ft.		~									
					\sim		ete					tt:	13	"		Ti	p:	9'	,							
							off					51														
			rc) 1 f														
-					+																					
F	- il	e	d	in	1	er	nsi	or	1:-1	22	x	12	" (ര	cu	to	ff	s	m	ne-	ര	g	roi	un	d	
															cre								1			
•					r					7-		-,					, .	-1-				P				
(Dh	><	e	rv	a	ti	or	s:																		
									ft.	-		-	14	4 b	lov	NS	in.	a	22	.75	ft	-				
									5 f						olo											
									ft.						/in			_		I		olo	ws	/in		
									2.5																	
	-	+		-																						-

Part 645 National Engineering Handbook

Sample D-37 Field Notes of Test Pile Driving and Loading Using Field Book—sheet 3 of 4

Station	B.S.	H.I.	F.S. or grade rod	Elev. or planned elev.	
Date &	Elapsed	Load	Settle-	Remarks	
time	time	(ton)	ment		
11/20/17	0:00	0.0	0.000		
8:00am	0:02	12.5	0.000		
	0:10	12.5	0.000		
	0:20	12.5	0.000		
	0:40	12.5	0.000		
	1:00	25.0	0.003		
	•••	•••	•••		
	3:00	37.5	0.006		
	4:00	50.0	0.008		
	5:00	62.5	0.011		
	6:00	75.0	0.013		
	•••	•••	•••		
	30:00	100.0	0.018		
	32:00	25.0	0.010		
11/21/17	33:00	10.0	0.007		
6:00pm	34:00	0.0	0.005		

Part 645 National Engineering Handbook

Sample D-37 Field Notes of Test Pile Driving and Loading Using Field Book—sheet 4 of 4

Test Pile Loadi	ng Record	J.D. Douglas
		R.W. Brown
Doe Creek 18		11/20-21/17
10' Right of Sta	ation PS 2+26	Cloudy, 57°F
Test Pile:		
Date pile drive	n: 11/19/31	
Kind/shape of	pile: Concrete/1	2"x12" Square
	tapered tip	
Condition of n	ile: Smooth and sour	
	.78 ft. @ butt; 127.28	π. @ τιρ
Ground elev. a	t pile: 150.2 ft.	
Method of load	ding/equipment:	
	consisting of box fille	ed with sand.
	imbers and steel I-be	
	o pile by calibrated h	-
Four photos ta	ken of test equipme	nt
Method of me	asuring settlement: I	Engineers level and
rod with Verni		