

# Range and Pasture Technical Note No. 190-RP-4 Determining Indicators of Pasture Health



Cover photo credit: 20110505-RD-LSC-0686, by Lance Cheung USDA Photos, May 5, 2011. Public Domain

In accordance with Federal civil rights law and USDA civil rights regulations and policies, the USDA, its agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family or parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at <u>How to File a Program Discrimination Complaint</u> and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by mail to U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410; by fax to (202) 690-7442; or by email to <u>program.intake@usda.gov</u>.



USDA is an equal opportunity provider, employer, and lender.

Photo 1 20110505-RD-LSC-0686, by Lance Cheung USDA Photos, May 5, 2011. Public Domain.

#### Author:

Ken Spaeth, Rangeland Hydrologist, National Grazing Lands Team, NRCS, May 2024.

#### **Suggested Citation**

Spaeth, Ken. Determining Indicators of Pasture Health. US Department of Agriculture, Natural Resources Conservation Service, National Grazing Lands Team, 2024.

#### Acknowledgements

Carolyn Auweloa, PIA State Rangeland Management Specialist, NRCS

Aaron Hird, Pasture Specialist, Conservation Effects Assessment Project (CEAP), NRCS

Shane Green, Rangeland Specialist, National Grazing Lands Team, NRCS

David Toledo, Research Rangeland Management Specialist, Northern Great Plains Research Laboratory, ARS

Dusty Jager, Pasture Specialist, Central National Technology Service Center, NRCS

Tammy Swihart, Grazing Specialist, East National Technology Service Center, NRCS

Brenda Simpson, Team Leader, National Grazing Land Team, NRCS

Rachel Meade, Rangeland Specialist, West National Technology Support Center, NRCS



Photo 2 20110505-RD-LSC-0686, by Lance Cheung USDA Photos, May 5, 2011. Public Domain



Photo 3 20160521-RD-LSC-1002, by Lance Cheung USDA Photos, May 21, 2016. Public Domain

# **Table of Contents**

| INTRO | DUCTION                                                                            | 6  |
|-------|------------------------------------------------------------------------------------|----|
| PASTL | JRELAND ASSESSMENT                                                                 | 7  |
| DETER | RMINING INDICATORS OF PASTURE HEALTH                                               | 8  |
| DETER | RMINING INDICATORS OF PASTURE HEALTH IN THE FIELD                                  | 14 |
| Pre   | PARE                                                                               | 14 |
| F     | Field Equipment Checklist                                                          |    |
| Ster  | P 1: DESCRIBE THE SITE                                                             |    |
| Ster  | P 2: RATE THE 22 INDICATORS                                                        |    |
| Ster  | P 3: RATE THE 4 ATTRIBUTES                                                         |    |
| INDIC | ATORS OF PASTURE HEALTH                                                            | 16 |
| 1.    | Erosion (sheet and rill)                                                           |    |
| 2.    | EROSION (GULLIES)                                                                  |    |
| 3.    | EROSION, WIND-SCOURED OR DEPOSITIONAL AREAS                                        | 19 |
| 4.    | Erosion (streambank or shoreline)                                                  | 20 |
| 5.    | Water Flow Patterns                                                                | 22 |
| 6.    | Bare Ground (%)                                                                    | 23 |
| 7.    | Pedestals and Terracettes                                                          | 24 |
| 8.    | LITTER MOVEMENT (WIND OR WATER)                                                    | 25 |
| 9.    | EFFECTS OF PLANT COMMUNITY COMPOSITION AND DISTRIBUTION ON INFILTRATION AND RUNOFF | 26 |
| 10.   | Soil Surface Loss or Degradation                                                   |    |
| 11.   | COMPACTION LAYER                                                                   |    |
| 12.   | Live Plant Foliar Cover (hydrologic and erosion benefits)                          | 32 |
| 13.   | Forage Plant Diversity                                                             |    |
| 14.   | Percent Desirable Forage Plants (for identified livestock class)                   | 35 |
| 15.   | Invasive Plants                                                                    |    |
| 16.   | PRODUCTION                                                                         |    |
| 17.   | Plant Vigor with an Emphasis on Reproductive Capability of Perennials              |    |
| 18.   | Dead or Dying Plants or Plant Parts                                                |    |
| 19.   | LITTER COVER AND DEPTH                                                             |    |
| 20.   | Percentage Legumes                                                                 |    |

| 21. UNIFORMITY OF USE                                       |    |
|-------------------------------------------------------------|----|
| 22. GRAZING AND UTILIZATION                                 | 45 |
| INTERPRETING THE INDICATOR RATINGS – THE 4 ATTRIBUTES       | 47 |
| APPENDIX: EVALUATION SHEET                                  | 53 |
| APPENDIX: CASE STUDY EXAMPLE I (COOL SEASON PLANT SPECIES)  | 56 |
| GENERAL SETTING DESCRIPTION                                 |    |
| Soils                                                       |    |
| SUMMARY                                                     | 59 |
| APPENDIX: CASE STUDY EXAMPLE II (WARM SEASON PLANT SPECIES) | 60 |
| General Setting Description                                 | 61 |
| Soils                                                       | 61 |
| SUMMARY                                                     | 64 |
| WORKS CITED                                                 | 66 |

# Figures

| Figure 1 Concept example of a rangeland state and transition model identifying several alternative or converted     |      |
|---------------------------------------------------------------------------------------------------------------------|------|
| land uses (altered states) within an Ecological Site.                                                               | 12   |
| Figure 2 State & Transition model for F134XY105MS Southern Rolling Plains Loess Fragipan Upland, Community          | 3.1  |
| Pasture or Grassland                                                                                                | . 13 |
| Figure 3 Flow chart showing steps to completing a DIPH assessment in the field                                      | 14   |
| Figure 4 Soil structure types (USDA NRCS, 2012). Platy structure is commonly associated with soil compaction        | 30   |
| Figure 5 Illustration of 3 different cover concepts. (USDA NRCS, 2020)                                              | 32   |
| Figure 6 A graphical definition of the term "utilization" in contrast with the related terms harvest efficiency and |      |
| grazing efficiency (Green & Brazee, 2012)                                                                           | .46  |

# Tables

| Table 1. Comparison of Interpreting Indicators of Rangeland Health and Determining Indicators of Pasture Health         indicators       SSS=Soil and Site Stability. HE=Hydrologic Function         BI=Riotic Integrity.       IMOE=Livestock |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Management Quality Factor                                                                                                                                                                                                                      |
| Table 2 Generic descriptors of the five departure categories in the evaluation matrix for Erosion (sheet and rill)17                                                                                                                           |
| Table 3 Generic descriptors of the five departure categories in the evaluation matrix for Erosion (gullies)                                                                                                                                    |
| <b>Table 4</b> Generic descriptors of the five departure categories in the evaluation matrix for Erosion, Wind-Scoured or         Depositional Areas       19                                                                                  |
| <b>Table 5</b> Generic descriptors of the five departure categories in the evaluation matrix for Erosion (streambank and shoreline)         21                                                                                                 |
| Table 6 Generic descriptors of the five departure categories in the evaluation matrix for Water Flow Patterns23                                                                                                                                |
| Table 7 Generic descriptors of the five departure categories in the evaluation matrix for Bare Ground (%)                                                                                                                                      |
| <b>Table 8</b> Generic descriptors of the five departure categories in the evaluation matrix for Pedestals and Terracettes                                                                                                                     |
| <b>Table 9</b> Generic descriptors of the five departure categories in the evaluation matrix for Litter Movement (wind or water)                                                                                                               |

| Table 10 Generic descriptors of the five departure categories in the evaluation matrix for Effects of Plant                |
|----------------------------------------------------------------------------------------------------------------------------|
| Community Composition and Distribution on Infiltration and Runoff                                                          |
| Table 11 Generic descriptors of the five departure categories in the evaluation matrix for Soil Surface Loss or            |
| Degradation                                                                                                                |
| Table 12 Generic descriptors of the five departure categories in the evaluation matrix for Compaction Layer31              |
| Table 13 Generic descriptors of the five departure categories in the evaluation matrix for Live Plant Foliar Cover         |
| (hydrologic and erosion benefits)                                                                                          |
| Table 14 Generic descriptors of the five departure categories in the evaluation matrix for Forage Plant Diversity35        |
| <b>Table 15</b> Generic descriptors of the five departure categories in the evaluation matrix for Percent Desirable Forage |
| Plants (for identified livestock class)                                                                                    |
| Table 16 Generic descriptors of the five departure categories in the evaluation matrix for Invasive Plants           38    |
| Table 17 Generic descriptors of the five departure categories in the evaluation matrix for Production                      |
| Table 18 Generic descriptors of the five departure categories in the evaluation matrix for Plant Vigor with an             |
| Emphasis on Reproductive Capability of Perennials40                                                                        |
| Table 19 Generic descriptors of the five departure categories in the evaluation matrix for Dead or Dying Plants or         |
| Plant Parts                                                                                                                |
| Table 20 Generic descriptors of the five departure categories in the evaluation matrix for Litter Cover and Depth 42       |
| Table 21 Generic descriptors of the five departure categories in the evaluation matrix for Percentage Legumes44            |
| Table 22 Generic descriptors of the five departure categories in the evaluation matrix for Uniformity of Use45             |
| Table 23 Generic descriptors of the five departure categories in the evaluation matrix for Grazing and Utilization 47      |
| Table 24 Evaluation matrix used to rate the 22 indicators and five departure categories of pasture health                  |
| Table 25 Determining Indicators of Pasture Health Evaluation Sheet for Case Study I Cool Season Plant Species57            |
| Table 26 DIPH Evaluation Sheet for Case Study I Cool Season Plant Species, 1 of 2                                          |
| Table 27 DIPH Evaluation Sheet for Case Study I Cool Season Plant Species, 2 of 2                                          |
| Table 28 Determining Indicators of Pasture Health Evaluation Sheet for Case Study II Warm Season Plant Species 62          |
| Table 29 DIPH Evaluation Sheet for Case Study II Warm Season Plant Species, 1 of 2                                         |
| Table 30 DIPH Evaluation Sheet for Case Study II Warm Season Plant Species, 2 of 2                                         |



Photo 4 20230913-FPAC-KLS-0034\_EDIT, by Kirsten Strough USDA Photos, 9/13/2023. Public Domain

# Introduction

Pasturelands are an important land use in all US states and territories. Non-federal pastureland comprises about 6%, or 121 million acres in the contiguous 48 US states (USDA Natural Resources Conservation Service, 2018). Pasturelands provide many benefits such as forage for livestock, wildlife food and habitat, watersheds, and recycling carbon.

What specifically are pasturelands? There are several definitions for pasture but in essence, all definitions agree that pasture is a land use type having vegetation cover comprised primarily of introduced or domesticated native forage species and is primarily used for livestock grazing (Forage and Grazing Terminology Committee, 1991; SRM, 1999; USDA NRCS, 2023). Pastures may receive periodic renovation and cultural treatments such as fertilization, weed control, reseeding, tillage and mowing, and may also be irrigated (SRM, 1999; Holechek, et al., 2010; USDA NRCS, 2023). Pasture vegetation can consist of single species or mixtures of grasses, legumes, other forbs, shrubs (USDA NRCS, 2023). Many of the common pasture forage species are now naturalized and are vital components of pasture-based grazing systems (USDA NRCS, 2022).

Pastureland has a close connection to cropland as many pastures were once cultivated and subsequently converted to pasture plant species for a variety of reasons e.g., slope restraints, erosion history, low or reduced crop productivity, economics of cropping, and need for livestock forage. Cropland and pastureland soils originally were prairie grasslands, rangeland, or forested lands and are now recognizably different in their converted state. Expectations about their functionality, especially in manipulated agricultural settings and response to management must be uniquely considered (Brown & Herrick, 2016; Spaeth, 2022). Converted or altered states that represent many of these pasturelands are now depicted in ecological site descriptions and State and Transition Models.

## **Pastureland Assessment**

Field assessments on range and pastureland are integral steps in USDA-NRCS conservation planning and in National Resource Inventory (NRI) Field Studies (USDA NRCS, 2022). Land assessments for both range and pastureland continue to evolve and are important tools to translate land condition, health, and the functionality of ecological processes.

The premise associated with Interpreting Indicators of Rangeland Health (IIRH) and Determining Indicators of Pasture Health (DIPH) is that many unique site-specific effects and environmental relationships exist in grazing land ecosystems, and these methodologies provide a means of detecting changes in ecological attributes relative to a site's ecological potential. Toledo et. al. (2016) compared the concepts of Pasture Condition Scoring (PCS) and IIRH and stated that there is a "need for an improved grazing land assessment tool that merges the relevant elements of both rangeland and pastureland assessment methods, while taking into account the differing ecosystem attributes and management objectives of the grazing lands where these methods are usually applied." Having a similar standardized grazing land assessment protocols based on ecological and land management principles would also ultimately improve national-level assessments (NRI) and would provide a valuable and efficient tool for assessing and managing grazing lands.

In 2001, the USDA-NRCS Grazinglands Technology Institute developed Pasture Condition Scoring (PCS) (USDA NRCS, 2001) for the purposes of 1) providing "a framework for planning and assessing management at a site" (Toledo, et al., 2016); 2) evaluating current plant productivity and the stability of soil, and water resources on pastureland; and 3) assisting in identifying future conservation treatment needs required to maintain or improve pasture conditions (Cosgrove, et al., 2001).

Two pastureland assessment tools were developed to reduce inconsistencies and bias of indicators associated with the 2001 PCS. These two assessment tools are available from NRCS and provide a "quick assessment" of current conditions and management. Both tools are qualitative but can also be semi-quantitative, meaning that there are some quantitative indicators that can be taken to support and supplement the assessments.

(1) Revised **Pasture Condition Scoring Tool** (USDA NRCS, 2020) provides the visual evaluation of 10 indicators, which rate pasture vegetation and soils. The revisions included incorporating quantitative measures which reduce rating subjectivity (Herrick, et al., 2005). Each indicator or factor has five possible ratings, ranging from lowest (poorest) condition (1) to highest (best) condition (5). The indicators are tallied into an overall score (50) for the pasture unit or utilized as individual scores and compared with the other nine indicators. Indicators receiving the lowest scores can be targeted for corrective action.

(2) **Determining Indicators of Pasture Health (DIPH)** is a detailed assessment tool and includes a matrix of indicators that can be used to determine the preponderance of evidence for four separate pastureland ecosystem attributes: biotic integrity, soil/site stability, hydrologic function, and livestock management quality factor. DIPH is a similar methodology to IIRH V5 (Pellant, et al., 2020), but has additional indicators that are only relevant to pastureland systems (Table 1).

# **Determining Indicators of Pasture Health**

Determining Indicators of Pasture Health (DIPH) includes a matrix of 22 indicators that can be used to determine the health rating for four separate pastureland ecosystem attributes: biotic integrity, soil/site stability, hydrologic function, and livestock management quality factor. The 22 indicators are used to rate the attributes based on the preponderance of evidence approach. The biotic integrity, soil/site stability, and hydrologic function are evaluated in both IIRH and DIPH, which standardizes indicators across grazing lands, and provides information about how well ecological processes – such as the water cycle, energy flow, and nutrient cycling – are functioning at a site regardless of grazing land type. The three ecosystem attributes (soil and site stability, hydrologic function, and biotic integrity) are determined from specific indicators (some indicators are used in the assessment of one or more of the three attributes) (Table 2).

Attribute definitions:

(1) Soil/Site Stability (SSS)—The capacity of an area to limit redistribution and loss of soil resources (including nutrients and organic matter) by wind and water (Pellant, et al., 2020).

(2) Hydrologic Function (HF)—The capacity of an area to capture, store, and safely release water from rainfall, run-on, and snowmelt (where relevant), to resist a reduction in this capacity, and to recover this capacity when a reduction does occur (Pellant, et al., 2020).

(3) Biotic Integrity (BI)—The capacity of the biotic community to support ecological processes within the normal range of variability expected for the site, to resist a loss in the capacity to support these processes, and to recover this capacity when losses do occur. The biotic community includes plants, animals, and microorganisms occurring both above and below ground (Pellant, et al., 2020).

(4) Livestock Management Quality Factor (LMQF) — The capacity of an area to support a sustainable livestock grazing operation. This attribute incorporates elements of grazing management and the suitability of the current plant community for livestock production (Toledo, et al., 2016).

Various soil and plant variables may be different across the continuum of pasturelands in the U.S. Some pasture environments can sustain high species diversity and many different adapted forage species (including legumes) and soil biota such as earthworms, etc., while some pasture systems are limited by various environmental constraints. For example, a wide variety of cool season grasses and legumes may be grown and maintained successfully in humid cold temperate climates in New England, whereas a semiarid subtropical climate in Louisiana may only support a maximum diversity of two warm season pasture grasses (Bermuda grass and Bahia grass), with no inherent introduced long-term sustainability of legumes (which act as annuals). Therefore, rating these indicators should be evaluated with the ecological constraints associated with the ecological site.

The Natural Resources Conservation Service (NRCS) classifies rangelands and forestlands into ecological sites for scientific study, evaluation, monitoring, planning activities, and management. Other land uses such as pastureland, cropland, and agroforestry are being incorporated into the state-and-transition model framework as converted or altered states for improved conservation planning (Figure 1). Ecological sites can provide a reference for understanding soil capabilities and a guide for planning and achieving a realistic approach to soil health. NRCS is actively involved in developing ecological site descriptions in coordination with other USDA agencies and the Department of Interior, Universities, and other partners (USDA NRCS, 2022).

Ecological site descriptions can provide valuable information about environmental parameters and reference conditions for specific indicators related to adaptability of certain forage species, legumes, invasive plants, as well as hydrology and erosion properties such as drainage, flooding, water flow paths, and propensity for rills, gullies, and erosion. The DIPH methodology is centric to the dynamics of the ecological site (ES) but can be used as a "stand-alone tool" similar to Describing Indicators of Rangeland Health (Lepak, et al., 2024).

Ecological site descriptions may contain one or several interconnected State and Transition Models (STM) depending on land use (range, forest, pasture, crop, agro-forestry) (Briske, et al., 2005; Karl & Herrick, 2010; Bestelmeyer, et al., 2017) . Figure 2 is an example of an STM which incorporates various land uses. In this example, a forest state (1) may be converted into cropland (2), pasture (3), or tree farm (4) states. Ecological site descriptions can be valuable documents that provide reference information related to climate-soils-plants-hydrologymanagement interactions. DIPH is a stand-alone tool when ecological site information is not available. **Table 1**. Comparison of Interpreting Indicators of Rangeland Health and Determining Indicators of Pasture Health indicators. SSS=Soil and Site Stability, HF=Hydrologic Function, BI=Biotic Integrity, LMQF=Livestock Management Quality Factor.

| Interpreting Indicators of           | Assessment  | Interpreting Indicators of                                   | Assessment   |
|--------------------------------------|-------------|--------------------------------------------------------------|--------------|
| Rangeland Health V 5                 |             | Pastureland Health                                           |              |
| 1. Rills                             | SSS, HF     | 1. Erosion (sheet and rill)                                  | SSS, HF      |
| 2. Gullies                           | SSS, HF     | 2. Erosion (gullies)                                         | SSS, HF      |
| 3. Water-flow Patterns               | SSS, HF     | 5. Water-flow Patterns                                       | SSS, HF      |
| 4. Pedestals and terracettes         | SSS, HF     | 7. Pedestals and terracettes                                 |              |
| 5. Bare ground                       | SSS, HF     | 6. Bare ground %                                             | SSS, HF      |
| 6. Wind-scoured, or                  | SSS         | 3. Wind-scoured, or deposition areas                         | SSS          |
| deposition areas                     |             |                                                              |              |
|                                      |             | 4. Erosion (shoreline) if present                            | SSS, HF      |
| 7. Litter movement (wind or water)   | SSS         | 8. Litter movement (wind or water)                           | SSS, HF      |
| 8. Soil surface resistance to        | SSS, HF, BI |                                                              | SSS, HF      |
|                                      |             | 12. Live plant foliar cover (hydrologic and erosion benefits | SSS, HF      |
| 9. Soil surface loss and degradation | SSS, HF, BI | 10. Soil surface loss or degradation                         | SSS, HF, BI  |
| 10. Effects of plant                 | HF          | 9. Effects of plant community                                | HF           |
| community composition and            |             | composition and distribution on                              |              |
| distribution on infiltration         |             | infiltration and runoff                                      |              |
| and runoff                           |             |                                                              |              |
| 11. Compaction layer                 | SSS, HF, BI | 11. Compaction layer                                         | SSS, HF, BI  |
| 12. Functional/structural            | ВІ          |                                                              |              |
| groups                               |             | 12 Famous alant diversity                                    |              |
|                                      |             | 13. Forage plant diversity                                   |              |
|                                      |             | 14. Percent desirable forage plants                          | LIVIQF       |
| 12 Dood or dving plants or plant     | RI.         | 18 Dead or dving plants or plant                             | RI           |
| narts                                | ы           | narts                                                        | ы            |
| 14. Litter coverand depth            | HF. BI      | 19 Litter cover and depth                                    | HF. BI       |
| 15 Annual production                 | BI          | 16. Potential production                                     | BL I MOF     |
| 16. Invasive plants                  | BI          | 15. Invasive plants                                          | BI           |
| 17. Vigor with an emphasis on        | BI          | 17. Plant vigor with an emphasis on                          | BI           |
| reproductive capability of           |             | reproductive capability of perennial                         |              |
| perennial plants                     |             | plants                                                       |              |
|                                      |             | 20. Percent non-toxic legumes (based                         | BI, LMQF     |
|                                      |             | on adaptability with Ecol. Site or what                      |              |
|                                      |             | is expected stand and longevity for                          |              |
|                                      |             | the site.                                                    |              |
|                                      |             | 21. Uniformity of use                                        | HF, BI, LMQF |
|                                      |             | 22. Grazing and utilization                                  | BI, SSS, HF, |
|                                      |             |                                                              | LMQF         |



**Figure 1** Concept example of a rangeland state and transition model identifying several alternative or converted land uses (altered states) within an Ecological Site.



**Figure 2** State & Transition model for F134XY105MS Southern Rolling Plains Loess Fragipan Upland, Community 3.1 Pasture or Grassland: This phase is characterized by a monoculture of or mixture of Forage species planted or allowed to establish from naturalized species, managed for forage production or as herbaceous ground cover. This Site fits into multiple Pasture Suitability Groups: 11a in MS or 8A in LA. • 11a - Upland, moderately deep, medium textured soils, Moderately well and somewhat poorly drained • 8 - Upland, deep, medium-textured soil • A – soils having few limitations for the growth of the commonly grown plants except for slope. From these bullet descriptions of the Groups this site would generally be described as a Moderately Deep to Deep, Moderately Well to somewhat poorly drained, Medium textured soils on Uplands. It has limiting factors including a possibility of a root limiting layer. All soils need nitrogen fertilization for production when grasses are grown alone. It is not practical to apply high rates of fertilizer due to the wetness limitation potential of the site. To prevent extreme acidity in the subsoil when high rates of acidifying nitrogen is used, the surface soil should not be allowed to become more acid than 5.0 pH and lime should be applied at more frequent intervals.

## Determining Indicators of Pasture Health in the Field



Figure 3 Flow chart showing steps to completing a DIPH assessment in the field.

#### Prepare

Having the proper knowledge and training before conducting assessments using DIPH is highly advisable.

To begin the DIPH protocol, assemble field forms as shown in Table 2, Table 3, and Table 4, then follow the steps below.

Determining Indicators of Pasture Health Evaluation Sheet Part A (appendix) is used to collect basic information about the site.

Table 24 Evaluation matrix used to rate the 22 indicators and five departure categories of pasture health.

Determining Indicators of Pasture Health Evaluation Sheet Part B, page 1 of 2 (appendix) is used to record notes about the individual DIPH indicators.

Determining Indicators of Pasture Health Evaluation Sheet Part B, page 2 of 2 (appendix) is used for determination of preponderance of evidence of the indicators.

#### Field Equipment Checklist

- ✓ DIPH Technical Reference
- ✓ DIPH evaluation matrix and data sheets
- ✓ LPI data sheet
- ✓ Measuring tape and pin
- ✓ Aerial imagery of site
- ✓ Shovel or soil borer

- ✓ Grazing stick or yard stick
- ✓ GPS
- ✓ Soil Web or printed soils description
- ✓ Ecological Site Description
- ✓ Grass clipping equipment
- Plant Identification Aids
- ✓ Maps, weather data, etc.

✓ Penetrometer

#### Step 1: Describe the site

Complete site evaluation sheet part A (appendix). Estimate plants based on ocular estimates (foliar cover classes) or conduct a line point sample--50-100 points; (Pellant, et al., 2020; USDA NRCS, 2022).

#### Step 2: Rate the 22 indicators

DIPH is conducted in the field, and each indicator is evaluated based on the scale in the matrix. This table includes five generic descriptors for each indicator, which reflect the range of departure from expected conditions for the site: none to slight, slight to moderate, moderate, moderate to extreme, and extreme to total. Since many ecological sites have not developed pasture state narratives to establish reference conditions for pasture stands, the DIPH evaluation matrix is used with generic descriptors.

#### Step 3: Rate the 4 attributes

The 22 indicators are rated individually to determine the attribute ratings and recorded on the Determining Indicators of Pasture Health Evaluation Sheet Part B (appendix). Make notes to support attribute ratings. See section on Interpreting the Indicator Ratings – the 4 Attributes.

## **Indicators of Pasture Health**

1. Erosion (sheet and rill)



**Photo 5** Rill erosion on a hillslope. Photo credit: Antonio Jordán, University of Seville, Sevilla, Spain

Soil loss caused by water drop impact, drip splash from water dropping off plant leaves and stems onto bare soil, and a thin sheet of runoff water flowing across the soil surface. Sheet and rill erosion increase as cover decreases. Evidence of sheet erosion appears as small debris dams of plant residue that build up at obstructions or span between obstructions. Some soil aggregates or worm castings may also be washed into the debris' dams (USDA NRCS, 2022; USDA NRCS, 2020).

Rills are associated with water erosion. Rills are small channels usually a few centimeters deep formed by runoff. Interrill erosion includes soil loss by raindrop splash and erosion from shallow overland flow (sheet). Rills are not always discernable in the long-term, but can appear in denuded pastures after heavy rainstorm events.

**Observe and record**: Consider number of rills, width, depth, length and where they occur: exposed areas or vegetated.

**Relevance to DIPH**: SSS-transport and movement of soil, soil redistribution and loss on-site; HF-rapid loss of water, reduced infiltration, and water storage on-site

Table 2 Generic descriptors of the five departure categories in the evaluation matrix for Erosion (sheet and rill)

| Indicators                     | Extreme-to-<br>Total                                                                                                                         | Moderate-to-<br>Extreme                                                                                                                                                      | Moderate                                                                                                                                                             | Slight-to-<br>Moderate                                                                                                           | None-to-<br>Slight                               |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1. Erosion<br>(sheet and rill) | Numerous and<br>frequent<br>throughout.<br>Nearly all rills<br>are wide, deep<br>and long.<br>Occur in<br>exposed and<br>vegetated<br>areas. | Moderate in<br>number at<br>frequent<br>intervals. Many<br>rills are wide,<br>deep, and<br>long. Occur in<br>exposed areas<br>and in some<br>adjacent<br>vegetated<br>areas. | Moderate in<br>number at<br>infrequent<br>intervals.<br>Moderate rill<br>width, depth,<br>and length.<br>Occur mostly<br>in exposed<br>areas, and<br>steeper slopes. | Scarce and<br>scattered.<br>Minimal rill<br>width, depth,<br>and length.<br>Occur in<br>exposed areas,<br>and steeper<br>slopes. | Current or<br>past formation<br>of rills – none. |

## 2. Erosion (gullies)

Gullies are deeper than rills and are erosion channels caused by concentrated overland flow, usually from runoff between two adjacent slopes (natural drainage) after rainstorm event. Gullies normally follow natural drainage channels but are not considered "streams".

Difference between rills and a gully: rills are less than 1 ft (30 cm) wide and 2 ft (61 cm) deep, and gullies exceed these limits (Selby, 1993). It is important to rate an observed erosional feature as either a gully or a rill.

Because of the magnitude to which a single gully can affect an evaluation area, gullies are assessed by the observing the severity of erosion in individual gullies. The occurrence of deeper, wider, or more actively eroding gullies indicates accelerated soil erosion and water loss.

**Observe and Record:** Determine the numbers of gullies in an evaluation area (if there are more than one) and assessing the severity of erosion in individual gullies. Signs of active erosion (e.g., incised sides along a gully or headcuts) are indicative of a current erosional problem, while a healing gully is characterized by rounded banks, perennial vegetation growing in the bottom and on the sides (Anderson, 1974), and a reduction in gully depth (Martin & Morton, 1993).

**Relevance to DIPH**: SSS-soil loss erosion, landscape degradation; HF-accelerated runoff and transport of water offsite, and water table affects.

Table 3 Generic descriptors of the five departure categories in the evaluation matrix for Erosion (gullies)

| Indicators              | Extreme-to-<br>Total                                                                                                                                                                                                                                       | Moderate-to-<br>Extreme                                                                                                                                                                                                                             | Moderate                                                                                                                                                                            | Slight-to-<br>Moderate                                                                                                                                             | None-to-<br>Slight |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 2. Erosion<br>(gullies) | Sporadic or no<br>vegetation on<br>gully banks<br>and bottom.<br>Numerous<br>nick points.<br>Significant<br>active bank<br>and bottom<br>erosion,<br>including<br>downcutting.<br>Substantial<br>depth and<br>width. Active<br>headcuts may<br>be present. | Intermittent<br>vegetation on<br>gully banks<br>and bottom.<br>Nick points<br>common.<br>Moderate<br>active bank<br>and bottom<br>erosion,<br>including<br>downcutting.<br>Significant<br>width and<br>depth. Active<br>headcuts may<br>be present. | Occasional<br>vegetation on<br>gully banks<br>and bottom.<br>Occasional<br>nickpoints or<br>slight<br>downcutting.<br>Moderate<br>depth and<br>width. Active<br>headcuts<br>absent. | Vegetation on<br>most gully<br>banks and<br>bottom. Few<br>nickpoints or<br>minimal<br>downcutting.<br>Minimal gully<br>depth and<br>width.<br>Headcuts<br>absent. | None               |



Photo 6 Gully erosion progression from 2011 (left) to 2017 (right) in a Mississippi pasture. Photo credit: Google Earth



**Photo 7** A large headcut at the beginning of a long gully in a pasture in Mississippi. Photo Credit: Shane Green, NRCS

#### 3. Erosion, Wind-Scoured, or Depositional Areas

This indicator includes soil loss, movement, and deposition from wind erosion. It is highly correlated with major site deterioration and desertification. Windblown particles cause abrasion damage to plants and may leave exposed roots or buried plants. Changes in soil surface dynamics will result. An area of wind-scour has had surface soil "scoured" off by the wind.

**Observe and record**: Frequency, size and connectivity of scours and deposition areas.

**Relevance to DIPH**: SSS-soil erosion and deposition, change in soil surface dynamics, buried plants.

| Indicators   | Extreme-to-<br>Total | Moderate-to-<br>Extreme | Moderate      | Slight-to-<br>Moderate | None-to-<br>Slight |
|--------------|----------------------|-------------------------|---------------|------------------------|--------------------|
| 3. Erosion,  | Extensive.           | Common.                 | Occasionally  | Infrequent and         | None or as         |
| Wind-Scoured | Wind                 | Wind scours             | present. Wind | few. Wind              | expected in        |
| or           | blowouts/scou        | frequently              | scours        | scours rarely          | reference ESD      |
| Depositional | rs usually           | connected.              | infrequently  | connected.             |                    |
| Areas        | connected.           | Moderate soil           | connected.    | Trace amounts          |                    |
|              | Large soil           | depositions             | Minor soil    | of soil                |                    |
|              | depositions          | around                  | deposition    | deposition             |                    |
|              | around               | obstructions.           | around        | around                 |                    |
|              | obstructions.        |                         | obstructions. | obstructions.          |                    |

**Table 4** Generic descriptors of the five departure categories in the evaluation matrix for Erosion, Wind-Scoured, orDepositional Areas



Photo 8 Wind erosion in a pasture in Hawaii. Photo credit: Carolyn Auweloa, NRCS, 2016

## 4. Erosion (streambank or shoreline)

Streambank erosion is a naturally occurring process, but the rate of degradation is often increased by human activities such as changes in land use, grazing or urbanization. Streambank erosion is caused by activities both at the watershed (large-scale) as well as at the stream or reach scale (small-scale). Streambank erosion occurs when the forces of water (hydraulic) and gravity (geologic) are greater than the ability of the streambanks to remain stable, resulting in failure. A hydraulic failure occurs when the flowing water from the stream directly hits the streambank, while a geologic failure occurs when an overhanging bank collapses or sloughs off due to gravity. At the stream reach scale, streambank erosion is increased largely by activities that impact riparian vegetation, soil stability, and channel sinuosity.

Extensive stream reaches should be assessed with the Stream Visual Assessment Protocol (USDA NRCS, 2009) or Proper Functioning Condition (USDI BLM, 2017) tools.

**Observe and record**: Bank sloughing, trampling, vertical cutbanks, and the proportion of vegetated: eroded banks.

Relevance to DIPH: SSS and HF



Photo 9 Streambank erosion in South Dakota. Photo credit NRCS South Dakota.

**Table 5** Generic descriptors of the five departure categories in the evaluation matrix for Erosion (streambank and shoreline)

| Indicators    | Extreme-to-    | Moderate-to-    | Moderate       | Slight-to-      | None-to-        |
|---------------|----------------|-----------------|----------------|-----------------|-----------------|
|               | Total          | Extreme         |                | Moderate        | Slight          |
| 4. Erosion    | Banks bare,    | More than half  | About half the | Some            | Bank            |
| (streambank   | major vertical | the expected    | bank           | indication of   | vegetation      |
| or shoreline) | down cutting,  | bank            | vegetation     | trampled bank   | intact, minimal |
|               | major          | vegetation      | trampled;      | vegetation,     | trampling or    |
|               | sloughing,     | absent, veg.    | active         | active          | sloughing.      |
|               | little or no   | trampled,       | sloughing and  | sloughing       |                 |
|               | bank           | sloughing and   | downcutting.   | downcutting,    |                 |
|               | vegetation.    | vert. banks     | Hydrology of   | or vertical     |                 |
|               | Hydrology of   | active erosion. | riparian       | slopes are      |                 |
|               | riparian       | Hydrology of    | system         | minimal.        |                 |
|               | system         | riparian        | moderately     | Hydrology of    |                 |
|               | severely       | system highly   | altered.       | riparian        |                 |
|               | altered.       | altered.        |                | system slightly |                 |
|               |                |                 |                | altered.        |                 |

#### 5. Water Flow Patterns

Water flow patterns on the landscape have inherent path(s) of moving water across the soil surface during periods of rainfall. This waterflow is sometimes referred to as sheet flow or overland flow.

Water flow patterns follow the natural microtopography of the landscape. These patterns are generally evidenced by litter, soil or gravel redistribution, or pedestalling of vegetation or stones that break or divert the flow of water.



**Photo 10** Water flow pattern in a pasture in Maui. Most water flow patterns are subtle and difficult to observe where cover is high. Photo credit: Carolyn Auweloa, NRCS 2021

Length, width, and number of water flow patterns are influenced by the number and kinds of obstructions to water flow provided by basal intercepts of living or dead plants, persistent litter, or rocks. They may be continuous or appear and disappear as the slope, perennial plant density, and microtopography change. Soils with inherently low infiltration capacity may have a large number of natural water flow patterns. Generally, as slope increases and ground cover decreases, water flow patterns increase.

**Observe and record**: Length, width, frequency and connectivity of water flow patterns.

**Relevance to DIPH**: SSS-associated with inter-rill erosion, sediment transport; HF-accelerated water loss and erosion, increased length, and number of water flow paths associated with reduced infiltration and water storage on-site.

**Table 6** Generic descriptors of the five departure categories in the evaluation matrix for Water Flow Patterns

| Indicators    | Extreme-to-<br>Total | Moderate-to-<br>Extreme | Moderate        | Slight-to-<br>Moderate | None-to-<br>Slight |
|---------------|----------------------|-------------------------|-----------------|------------------------|--------------------|
| 5. Water Flow | Extensive. Long      | More numerous           | Lengths and     | Length and             | Natural, well      |
| Patterns      | and wide.            | and widespread.         | widths slightly | width nearly           | vegetated, or as   |
|               | Erosional or         | Longer and              | to moderately   | match expected.        | described in ESD   |
|               | depositional         | wider than              | higher than     | Some minor             |                    |
|               | areas                | expected.               | expected. Minor | erosional or           |                    |
|               | widespread.          | Erosional or            | to moderate     | depositional           |                    |
|               | Usually              | depositional            | erosional or    | areas. Rarely          |                    |
|               | connected.           | areas common.           | depositional    | connected.             |                    |
|               |                      | Occasionally            | areas.          |                        |                    |
|               |                      | connected.              | Infrequently    |                        |                    |
|               |                      |                         | connected.      |                        |                    |

#### 6. Bare Ground (%)



**Photo 11** Bare ground patches commonly occur in high traffic areas of the pasture. Photo credit: Greg Brann.

Bare ground is exposed mineral soil that is susceptible to raindrop splash erosion and exacerbates accelerated overland flow. Bare ground in the context of raindrop impact is associated with a lack of plant foliar cover, litter, rock, or basal plant crowns covering the soil surface.

A bare ground patch is an area where bare ground is concentrated. They may include some ground cover (individual plant, litter, rock) within their perimeter but there is proportionally much more bare soil than ground surface cover. Some bare ground patches may be part of the natural range of variability associated with the ecological site, e.g., disturbances like ant mounds and rodent burrows.

**Observe and record**: Increases in overall bare ground AND increases in the size and connectivity of bare ground patches as compared to expectations and for the appropriate reference state, if available.

**Relevance to DIPH**: SSS and HF are directly impacted by bare ground, as infiltration rate and capacity decrease, and runoff and subsequently erosion increase.

| Indicators            | Extreme-to-<br>Total                                                                                          | Moderate-to-<br>Extreme                                                                                                       | Moderate                                                                                                                   | Slight-to-<br>Moderate                                                                            | None-to-<br>Slight                                                                                               |
|-----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 6. Bare Ground<br>(%) | Substantially<br>higher than<br>expected. Bare<br>ground patches<br>are large and<br>frequently<br>connected. | Much higher<br>than expected.<br>Major bare<br>ground patches<br>throughout<br>stand, large and<br>occasionally<br>connected. | Moderately<br>higher than<br>expected. Bare<br>ground patches<br>are moderate in<br>size and<br>sporadically<br>connected. | Slightly higher<br>than expected.<br>Bare ground<br>patches are<br>small and rarely<br>connected. | Amount and<br>size of bare<br>areas match that<br>expected for the<br>site. Else, no<br>bare ground in<br>stand. |

Table 7 Generic descriptors of the five departure categories in the evaluation matrix for Bare Ground (%)

#### 7. Pedestals and Terracettes



**Photo 12** Terracettes of litter and soil accumulated from overland flow. Photo credit: Greg Brann.

Pedestals can form with the movement of soil by water or wind around the base of plants or from around rocks or persistent litter clumps and have the appearance of being elevated above the soil surface. Roots may also be exposed and is a significant sign of active erosion. Loss of soil around plant bases affect hydrologic function as infiltration is reduced and runoff and erosion are increased. Frost heaving, considered a non-erosional process, can create features that are similar in appearance to erosional pedestals. Distinguish between the two processes as separate processes associated with the ecological site.

24 TN 190 RP 4 (November 2024)

Terracettes are "benches" of soil deposition (may include incorporated litter or gravel) behind or between obstacles (persistent litter, rocks, or plant bases) caused by water (not wind) movement. Terracettes caused by livestock or wildlife paths or trails on hillsides are not considered erosional terracettes; they are assessed using other indicators; they can affect erosion by concentrating water flow (1, 2, 5), changing infiltration (9) or soil compaction (11) (Pellant, et al., 2020).

**Observe and record**: Extent (number) of pedestals and terracettes, exposed roots.

**Relevance to DIPH**: SSS pedestals are directly related to soil movement by wind and water. Loss of soil around plant bases is also associated with changes in HF as infiltration is reduced, and runoff and erosion are increased.

| Indicators   | Extreme-to-<br>Total | Moderate-to-<br>Extreme | Moderate        | Slight-to-<br>Moderate | None-to-<br>Slight |
|--------------|----------------------|-------------------------|-----------------|------------------------|--------------------|
| 7. Pedestals | Pedestals            | Pedestals               | Pedestals       | Pedestals              | None               |
| and          | extensive;           | widespread;             | common;         | uncommon;              | Terracettes,       |
| Terracettes  | roots                | roots                   | roots           | roots rarely           | none               |
|              | frequently           | commonly                | occasionally    | exposed.               |                    |
|              | exposed.             | exposed.                | exposed.        | Terracettes            |                    |
|              | Terracettes, if      | Terracettes, if         | Terracettes, if | scarce.                |                    |
|              | present, are         | present, are            | present, are    |                        |                    |
|              | widespread.          | common.                 | uncommon.       |                        |                    |

Table 8 Generic descriptors of the five departure categories in the evaluation matrix for Pedestals and Terracettes

#### 8. Litter Movement (wind or water)



**Photo 13** Accumulations of litter from feeding hay are not assessed as litter movement unless they have been moved, accumulated, or dispersed by wind or water. Photo credit: Greg Brann

"Litter" includes plant litter, mulch, crop residues, compost material, etc. Visual indications of litter movement can include accumulation of litter lodged against obstructions or patches void of litter that was removed. Distance of litter movement is associated with active erosional processes and nutrient redistribution.

When trying to determine the distance litter may have moved, it may be easier to look for litter from plants that are not dominant on the site, as their litter will be more recognizable and proximity to source more measurable.

**Observe and record**: Size classes and distance of litter movement and number of accumulations around obstructions or in depressions.

**Relevance to DIPH**: SSS and HF-correlated with accelerated runoff and erosion, and sediment transport. Secondary effects-associated nutrient loss.

| Indicators                                  | Extreme-to-<br>Total                                                                                                                                   | Moderate-to-<br>Extreme                                                                                                                                        | Moderate                                                                                                                              | Slight-to-<br>Moderate                                                                                                               | None-to-<br>Slight                |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 8. Litter<br>Movement<br>(wind or<br>water) | Extreme<br>movement of<br>all size classes<br>(including<br>large).<br>Significant<br>accumulations<br>around<br>obstructions<br>or in<br>depressions. | Moderate to<br>extreme<br>movement of<br>small to<br>moderate size<br>classes.<br>Moderate<br>accumulations<br>around<br>obstructions<br>or in<br>depressions. | Moderate<br>movement of<br>mostly small<br>size classes.<br>Small<br>accumulations<br>around<br>obstructions<br>or in<br>depressions. | Slight<br>movement of<br>small size<br>classes.<br>Minimal or no<br>accumulations<br>around<br>obstructions<br>or in<br>depressions. | None or as<br>described in<br>ESD |

**Table 9** Generic descriptors of the five departure categories in the evaluation matrix for Litter Movement (wind or water)

# 9. Effects of Plant Community Composition and Distribution on Infiltration and Runoff

Variables that affect site hydrology include: above-and below-ground plant morphology, total production, production of individual plant species, total canopy cover, canopy cover of individual plant species, plant architecture, sod-forming growth form, bunchgrass growth form, and interspace areas. Infiltration is usually highest under trees and shrubs and decreases progressively in the following order: bunchgrass, sodgrass, and bare ground (Thurow, et al., 1986). Individual plant species also have a profound effect on hydrology and erosion dynamics; i.e., different grasses, forbs, and shrubs (USDA NRCS, 2022; Spaeth, et al., 1996; Spaeth, et al., 1996). Field studies have documented infiltration capacity with individual species composition. Bunchgrasses are associated with higher infiltration capacity than sodgrass species (Mazarak & Conrad, 1959; Dee, et al., 1966; Aase & Wight, 1973; Spaeth, et al., 1996; Pierson, et al., 2002; USDA NRCS, 2022) Plant growth form can have a dramatic effect on infiltration. (Pearse & Wooley) compared bare plots with fibrous and tap-rooted species. Compared to the bare plots, the fibrous-rooted plant was associated with a 127 percent increase in infiltration, whereas tap-rooted species was associated with a 51 percent increase.

26 TN 190 RP 4 (November 2024)



**Photo 14** At the U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) scientists excavate eastern gamagrass roots for study at the Big Flats Plant Materials Center in NY. (L to R USDA NRCS agronomist Paul Salon, USDA Agricultural Research Service (ARS) technician Richard Lychalk, Bureau of Sugar Experiment Station, Queensland, Australia research scientist Jason Bull, and USDA ARS plant geneticist Rich Zobel). Photo credit: <u>https://flic.kr/p/e56Jb4</u>USDA, March 5, 2013.

**Observe and record**: When evaluating this indicator, we want to compare the current plant community with the potential naturalized community –not the historic plant community or a plant community with a different disturbance regime. How does the naturalized species composition of the site affect the hydrology (infiltration and runoff), compared to its potential?

Relevance to DIPH: HF.

**Table 10** Generic descriptors of the five departure categories in the evaluation matrix for Effects of Plant Community

 Composition and Distribution on Infiltration and Runoff

| Indicators                                                                                                                                                                                                                        | Extreme-to-<br>Total                                                                                                                                                                                                                 | Moderate-to-<br>Extreme                                                                                                                                                                                                                    | Moderate                                                                                                                                                                                                                  | Slight-to-<br>Moderate                                                                                                                                                                                                              | None-to-<br>Slight                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9, Effects of<br>Plant<br>Community<br>Composition<br>and<br>Distribution on<br>Infiltration and<br>Runoff<br>* Assume that<br>decreased<br>infiltration<br>causes a<br>corresponding<br>increase in<br>runoff.<br>Indicator 9 is | Total<br>Changes in<br>plant<br>community<br>(functional/str<br>uctural<br>groups)<br>composition<br>or distribution<br>are associated<br>with severe<br>reduction in<br>infiltration and<br>a significant<br>increase in<br>runoff. | Extreme<br>Changes in<br>plant<br>community<br>(functional/<br>structural<br>groups)<br>composition<br>or distribution<br>are associated<br>with<br>significantly or<br>greatly<br>decreased<br>infiltration and<br>a large<br>increase in | Changes in<br>plant<br>community<br>(functional/str<br>uctural<br>groups)<br>composition<br>or distribution<br>are associated<br>with moderate<br>reduction in<br>infiltration and<br>a moderate<br>increase in<br>runoff | Moderate<br>Community<br>(functional/<br>structural<br>groups)<br>composition<br>or plant<br>distribution<br>are associated<br>with moderate<br>reduction in<br>infiltration and<br>slight to<br>moderate<br>increase in<br>runoff. | Slight<br>Infiltration and<br>runoff are as<br>expected for<br>pasture state<br>in S&T model.<br>Plant<br>composition<br>and<br>corresponding<br>soil physical<br>properties are<br>not impeding<br>infiltration |
| correlated with Indicator 10                                                                                                                                                                                                      |                                                                                                                                                                                                                                      | runott.                                                                                                                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                  |

#### 10. Soil Surface Loss or Degradation



**Photo 15** A soil pit or vertical slice of the soil surface horizon will allow the opportunity to observe soil characteristics that may indicate loss or degradation, such as color, structure, or compaction. This photo shows a very crumbly granular structure in the surface horizon. Photo credit: Greg Brann

Indications include loss of thickness of surface soil horizon, loss of organic matter, changes in soil color, surface textural, and structural changes. Soil surface loss or degradation is an indicator of long-term change in pasture health and often persists after vegetation has recovered. If the degree of surface loss

and degradation are significant, the ramifications on all three attributes are permanent (Weltz & Spaeth, 2012). Depending on inherent soil texture by horizon, subsurface layers commonly exhibit less infiltration capacity and loss of the soil pores and porosity (Spaeth, et al., 1996).



**Photo 16** Erosion is a natural process, but with continuous or compounding disturbances, can accelerate beyond natural levels. The surface contains the most fertile and biologically active portion of the pasture's soil. It is the interface for water infiltration, nutrient cycling, and plant growth and reproduction. Accelerated soil losses, disturbance, or degradation can have enduring effects, depending on the system's resilience. Photo credit: NRCS

**Observe and record**: On sites where the loss is not obvious, a soil pit can be compared to the soil description to help determine how much soil loss or degradation may have occurred.

**Relevance to DIPH**: SSS-significant impact on all three attributes. Indication of past or current erosion, loss of organic matter, and decline in overall soil function; HF-significant effects, common reductions of infiltration and water holding capacity, increases in runoff and erosion, which have concomitant effects on biotic integrity and plant growth and production; BI-impact on the function of living organisms due to loss of organic matter.

| Indicators                                 | Extreme-to-<br>Total                                                                                                                                                                                                                               | Moderate-to-<br>Extreme                                                                                                                                                            | Moderate                                                                                                                                                                                  | Slight-to-<br>Moderate                                                                                                                                                                  | None-to-<br>Slight                                                         |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 10. Soil<br>Surface Loss or<br>Degradation | Soil surface<br>horizon very<br>thin to absent<br>throughout.<br>Soil surface<br>structure<br>similar to or<br>more<br>degraded than<br>subsurface. No<br>distinguishabl<br>e difference<br>between<br>surface and<br>subsurface<br>organic matter | Severe soil loss<br>or degradation<br>throughout.<br>Minor<br>differences in<br>soil organic<br>matter content<br>and structure<br>between<br>surface and<br>subsurface<br>layers. | Moderate soil<br>loss or<br>degradation in<br>plant<br>interspaces<br>with some<br>degradation<br>beneath plant<br>canopies. Soil<br>organic matter<br>content is<br>markedly<br>reduced. | Slight soil loss<br>or soil<br>structure<br>shows slight<br>signs of<br>degradation,<br>especially in<br>plant<br>interspaces.<br>Minor change<br>in soil organic<br>matter<br>content. | No apparent<br>soil loss or<br>degradation<br>(Reference<br>ESD narrative) |

Table 11 Generic descriptors of the five departure categories in the evaluation matrix for Soil Surface Loss or Degradation

## 11. Compaction Layer

Soil compaction is a result of soil disturbance due to past or current repeated compaction from farm machinery and other vehicles (Webb, et al., 1983; Thurow, et al., 1988), livestock trampling (Willatt & Pullar, 1984; Warren, et al., 1986; Chanasyk & Naeth, 1995), foot traffic (Cole, 1986), brush removal, seeding equipment, and raindrop impact with loss or absence of plant or litter cover (Wood & Blackburn, 1981; Thurow, et al., 1986; Thurow, et al., 1988; Blackburn, et al., 1992; Spaeth, et al., 1996). Compaction layers restrict water infiltrability and percolation (Willatt & Pullar, 1984; Thurow, et al., 1987), and nutrient cycling (Hassink, et al., 1993), which can have a negative effect on plant composition and production. Moist soils are more easily compacted than dry or saturated soil (Hillel, 2003). Compaction layers known as "plow pans" can occur at the bottom of a tillage layer and are commonly permanent in agricultural fields. Plow pans can restrict root development of plants, which also affect production capacity and resilience to drought.

**Observe and record**: Assess the frequency and distribution of compaction and thickness, depth and density of compacted layer.

**Relevance to DIPH**: Affects all three soil health attributes (SSS, HF, and BI) due to changes in hydrologic cycle, including reduced infiltration and water storage, increased runoff, soil erosion, and sedimentation. Compaction can significantly restrict root development and penetration.



**Figure 4** Soil structure types (USDA NRCS, 2012). Platy structure is commonly associated with soil compaction.

30 TN 190 RP 4 (November 2024)

 Table 12 Generic descriptors of the five departure categories in the evaluation matrix for Compaction Layer.

| 11.Extensive or<br>stronglyWidespread or<br>moderately to<br>stronglyModerately<br>widespread or<br>moderatelyNot<br>widespread or<br>widespread or<br>widespread or<br>weaklyNo apparent<br>compaction.Layerdeveloped<br>(thickness and<br>density); may<br>severelydeveloped<br>(thickness and<br>density); may<br>restrict root<br>anddeveloped<br>greatly restrict<br>rootdeveloped<br>density); may<br>moderatelydeveloped<br>developed<br>density); may<br>restrict root<br>restrict rootdensity); may<br>greatly restrict<br>restrict root<br>restrict root<br>restrict rootModerately<br>density); may<br>restrict root<br>restrict root<br>restrict root<br>restrict root<br>restrict rootNo apparent<br>compaction. | Indicators | Extreme-to-<br>Total | Moderate-to-<br>Extreme | Moderate        | Slight-to-<br>Moderate | None-to-<br>Slight |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-------------------------|-----------------|------------------------|--------------------|
| Compactionstronglymoderately towidespread orwidespread orcompaction.Layerdevelopedstronglymoderately towidespread orcompaction.(thickness anddevelopeddevelopeddevelopeddeveloped(thickness anddevelopeddeveloped(thickness and(thickness andseverelydensity); maydensity); maydensity); maydensity); mayrestrict rootgreatly restrictmoderatelyweakly restrictpenetrationrootrestrict rootrootandpenetrationpenetrationpenetration                                                                                                                                                                                                                                                                                           | 11.        | Extensive or         | Widespread or           | Moderately      | Not                    | No apparent        |
| Layerdevelopedstronglymoderatelyweakly(thickness anddevelopeddevelopeddeveloped(thickness and(thickness and(thickness and(thickness andseverelydensity); maydensity); maydensity); mayrestrict rootgreatly restrictmoderatelyweakly restrictpenetrationrootrestrict rootrootandpenetrationpenetrationpenetration                                                                                                                                                                                                                                                                                                                                                                                                              | Compaction | strongly             | moderately to           | widespread or   | widespread or          | compaction.        |
| (thickness and<br>density); maydevelopeddevelopeddevelopeddensity); may(thickness and<br>density); may(thickness and<br>density); may(thickness and<br>density); mayrestrict rootgreatly restrictmoderatelyweakly restrictpenetrationrootrestrict rootrootandpenetrationpenetrationpenetration                                                                                                                                                                                                                                                                                                                                                                                                                                | Layer      | developed            | strongly                | moderately      | weakly                 |                    |
| density); may<br>severely(thickness and<br>density); may<br>greatly restrict(thickness and<br>density); may<br>moderately(thickness and<br>density); may<br>weakly restrictrestrict root<br>penetrationgreatly restrict<br>rootmoderately<br>restrict rootweakly restrict<br>rootandpenetrationpenetrationpenetrationpenetration                                                                                                                                                                                                                                                                                                                                                                                              |            | (thickness and       | developed               | developed       | developed              |                    |
| severelydensity); maydensity); maydensity); mayrestrict rootgreatly restrictmoderatelyweakly restrictpenetrationrootrestrict rootrootandpenetrationpenetrationpenetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | density); may        | (thickness and          | (thickness and  | (thickness and         |                    |
| restrict rootgreatly restrictmoderatelyweakly restrictpenetrationrootrestrict rootrootandpenetrationpenetrationpenetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | severely             | density); may           | density); may   | density); may          |                    |
| penetrationrootrestrict rootrootandpenetrationpenetrationpenetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | restrict root        | greatly restrict        | moderately      | weakly restrict        |                    |
| and penetration penetration penetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | penetration          | root                    | restrict root   | root                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | and                  | penetration             | penetration     | penetration            |                    |
| infiltrability. and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | infiltrability.      | and                     | and             | and                    |                    |
| infiltrability. infiltrability. infiltrability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                      | infiltrability.         | infiltrability. | infiltrability.        |                    |



**Photo 17** Patterns of differences in penetrometer readings between grass clumps and plant interspaces caused by long-term overgrazing under wet conditions. Photo credit: Carolyn Auweloa, NRCS, 2021



**Photo 18** Management induced soil compaction resulting in decreased rooting depth that reduces plant growth, animal habitat, and soil biological activity. Photo credit: <u>https://flic.kr/p/2nwRgLU</u> by Blaine Brakke, USDA NRCS South Dakota, June 7, 2012

## 12. Live Plant Foliar Cover (hydrologic and erosion benefits)

Research has demonstrated a significant correlation between vegetative cover and kinds of vegetation with soil erosion, infiltration, and runoff (Pearse & Wooley, 1936; Osborn, 1950; Mazarak & Conrad, 1959; Dee, et al., 1966; Rauzi, et al., 1968; Blackburn & Skau, 1974; Blackburn , 1975; Hanson & Lewis, 1978; Wood & Blackburn, 1981; Blackburn, 1984) (Swanson & Buckhouse, 1984; Blackburn, et al., 1986; Snyman & Van Rensburg, 1986; Johnson & Gordon, 1988; Thurow, et al., 1988; Thurow, 1991; Holechek, et al., 1989; Wilcox & Wood, 1989; Wood & Wood, 1988; Blackburn, et al., 1992) (Blackburn, et al., 1990; Spaeth, et al., 1996; Spaeth, et al., 1996; Pierson, et al., 2002).



Figure 6 Illustration of 3 different cover concepts. (USDA NRCS, 2020)

Plant cover on grazing lands can be viewed in several ways, such as canopy cover, foliar cover, and basal cover (Figure 5). Canopy cover is an abstract view of the plant canopy as an estimate of the area occupied by the plant (the whole area) but ignores gaps or holes viewed from a vertical projection. Canopy cover can also be viewed as the vertical projection of the outer perimeter or edges of the plant. Foliar cover is more specific, the vertical projection of exposed leaf area covering soil. If a pin were lowered through the plant canopy, foliar cover is recorded where the pin intercepts a plant part. Foliar cover does not include gaps or openings in the plant canopy. Basal plant cover is related to the crown of the plant, the proportion of the plant at ground level or extends into the soil. Plant canopy cover occupies an outline of the projected area. Foliar cover is specific to a plant part that would intercept a raindrop. Basal cover occupies the least area as a plant crown at the ground surface.

As plant cover declines, infiltration decreases (Holechek, et al., 1989). Each plant soil complex exhibits a characteristic infiltration pattern (Gifford, 2021) Hydrologic processes such as infiltration are not constant from one soil complex to another. Soil physical and chemical attributes, plant/life growth forms, and storm dynamics can significantly change hydrologic dynamics among different ecological sites and within an ecological site. Most studies indicate that cover of 50 to 75 percent plant foliar and ground cover is probably sufficient (Gifford, 1985; Thurow, 1991; Spaeth, et al., 2022; Wood & Blackburn, 1981; Weltz, et al., 1998; Pierson, et al., 2011; Pierson & Williams, 2016; Cadaret, et al., 2016) to prevent degradation from accelerated soil erosion processes.

**Observe and record**: Live plant foliar cover is not species specific. Whether they are desirable species or not, measure percent live cover on the site and assess. Do not include dead-standing material or litter. Don't forget to look up and include tree cover.

#### Relevance to DIPH: SSS HF.

| Indicators     | Extreme-to-   | Moderate-to-  | Moderate      | Slight-to-    | None-to-        |
|----------------|---------------|---------------|---------------|---------------|-----------------|
|                | Total         | Extreme       |               | Moderate      | Slight          |
| 12. Live Plant | Less than 40% | 40–60% live   | 60–75% live   | 75–95% live   | More than       |
| Foliar Cover   | live foliar   | foliar cover. | foliar cover. | foliar cover. | 95% live foliar |
| (hydrologic    | cover.        | Remaining is  | Remaining is  | Remaining is  | cover.          |
| and erosion    | Remaining is  | either dead   | either dead   | either dead   | Remaining is    |
| benefits)      | either dead   | standing      | standing      | standing      | either dead     |
|                | standing      | material or   | material or   | material or   | standing        |
|                | material or   | bare ground.  | bare ground.  | bare ground.  | material or     |
|                | bare ground.  |               |               |               | bare ground.    |

**Table 13** Generic descriptors of the five departure categories in the evaluation matrix for Live Plant Foliar Cover (hydrologic and erosion benefits)

## 13. Forage Plant Diversity

Plant species diversity refers to the number of plant species (richness) and their relative abundance (evenness in composition). One important point associated with this indicator: "diversity is not simply a numbers game" (Sanderson, et al., 2004). From an environmental perspective, the proportional abundance of plant species (composition), their unique attributes, and their spatial distribution across the landscape are critical features in pasturelands (Sanderson, et al., 2004).



**Photo 20** A diverse pasture plant community including a variety of species and functional groups. Photo credit: Greg Brann.

Two situations are important regarding species diversity in pasturelands. First, many grazing lands are highly heterogeneous with varying soils, climate, and landscape features. Individual pastures may need to fulfill multiple functions for producers (animal production, resource protection, wildlife enhancement, including pollinators). Therefore, greater plant diversity may be the most beneficial course of action. Secondly, pasture management strives to maintain productivity, be energy efficient, achieve low cost, and provide adequate nutritive value to meet animal production goals. Management also minimizes stresses such as defoliation, drought, or weed invasion. Fulfilling these requirements and functions often requires growing many forage species together and "will entail a multi-scale approach with different forages and combinations of forage species distributed across a farm, according to site suitability and goals of the producer" (Sanderson, et al., 2007). Pastures consisting of mixtures of several forage species in some instances can improve forage yield and reduce weed invasion.

However, in highly productive soils and stable environments (low risk of erosion), where productivity is the main goal, a highly diverse system may not be appropriate. This indicator allows for judgment in establishing and maintaining diversity based on environmental conditions or its diversity of forage species, in accordance with landowner objectives.

Pasture management involving increased plant species diversity should not simply rely on mixing and planting as many forage species as possible. The goal should be to include species that provide stable protection against erosion and meet the needs of livestock and the farming or ranching operation.

**Observe and record**: Assess plant species diversity and composition by dry weight considering site potential, environmental conditions and needs and producer objectives and livestock class.

Relevance to DIPH: BI, LMQF.

34 TN 190 RP 4 (November 2024)

**Table 14** Generic descriptors of the five departure categories in the evaluation matrix for Forage Plant Diversity

| Indicators      | Extreme-to-<br>Total | Moderate-to-<br>Extreme | Moderate        | Slight-to-<br>Moderate | None-to-<br>Slight |
|-----------------|----------------------|-------------------------|-----------------|------------------------|--------------------|
| 13. Forage      | Diversity            | Low diversity           | Moderate        | Diversity              | High diversity     |
| Plant Diversity | severely             | in comparison           | diversity in    | slightly               | of desirable       |
| Note:           | lacking in           | with site               | comparison      | decreased in           | forage plants      |
| Legumes'        | comparison           | potential or            | with site       | comparison             | in stand or        |
| adaptability    | with site            | plant diversity         | potential or    | with site              | plant diversity    |
| based on what   | potential or         | not in                  | plant diversity | potential or           | in full            |
| is expected for | with                 | accordance              | is not          | plant diversity        | accordance         |
| site in ESD.    | management           | with                    | optimum with    | is somewhat            | with               |
|                 | objectives.          | management              | management      | lacking with           | management         |
|                 |                      | objectives.             | objectives.     | management             | objectives.        |
|                 |                      |                         |                 | objectives.            |                    |

#### 14. Percent Desirable Forage Plants (for identified livestock class)

Desirable plants are those that are palatable, productive, and nutritious. Secondary traits may also include species that have strong resilience to grazing (plants that readily tiller, location of meristematic tissue and growing points), are long-lived, and have extensive root systems to aid in erosion protection. Many forage species meet these criteria, but some forage plants are associated with anti-quality characteristics (Launchbaugh, 2001). For example, alkaloids can have large effects on forage quality, even when present in small quantities (Barnes, et al., 2003); tremorgens in perennial ryegrass can result in ryegrass staggers; indole alkaloids in reed canarygrass (*Phalaris arundinacea*); endophytic fungus, pyrorolizidine and ergopeptine alkaloids in tall fescue (fescue foot, fat necrosis, and or fescue toxicosis/summer syndrome); prussic acid poisoning in sorghum, sudangrass, johnsongrass (*Sorghum halepense*); cyanide poisoning (cyanogenic glycosides) in white clover; glucosinolates and S-methyl cysteine sulfoxide in brassica forages; magnesium deficiencies in spring forage grasses causing grass tetany; and pasture bloat from alfalfa, red clover, white clover, and other clovers, vetches, and grazed out wheat pastures.



**Photo 21** This pasture contains a high percentage of forage plants that are desirable for cattle. Photo credit: Greg Brann.

35 TN 190 RP 4 (November 2024)

As when using Pasture Condition Scoring (USDA NRCS, 2020), refer to your state or regional desirable plant list, and ideally, by grazing livestock type (cattle, sheep, goats) for scoring this indicator. Desirable species will depend upon geographic region and livestock type.

The most desirable species may be grazed first and close to the ground in poorly managed systems and therefore, may decline in prevalence. Meanwhile, other less-palatable species that can avoid grazing impacts may increase. These less-desirable species can eventually displace the desirable ones since they are grazed less, if at all. This replacement is important to this indicator and should not be overlooked when the desirability score is low.

**Observe and record**: The percent species that are desirable (for the identified livestock class) forage plants by dry-matter weight.



Relevance to DIPH: LMQF

**Photo 23** The type of livestock will determine which plants are considered as desirable. Photo credit: David Toledo

**Table 15** Generic descriptors of the five departure categories in the evaluation matrix for Percent Desirable Forage Plants (for identified livestock class)

| Indicators       | Extreme-to-<br>Total | Moderate-to-<br>Extreme | Moderate       | Slight-to-<br>Moderate | None-to-<br>Slight |
|------------------|----------------------|-------------------------|----------------|------------------------|--------------------|
| 14. Percent      | Desirable            | Desirable               | Desirable      | Desirable              | Desirable          |
| Desirable        | forage species       | forage species          | forage species | forage species         | forage species     |
| Forage Plants    | <20% dry             | 20–40% dry              | 40–60% dry     | 60–80% dry             | exceed 80%         |
| (for identified  | weight.              | weight.                 | weight.        | weight.                | dry weight.        |
| livestock class) |                      |                         |                |                        |                    |

#### **15. Invasive Plants**

Invasive plants are an important aspect of biotic integrity in perennial pasture systems. Invasive plants are plants that can be native or exotic non-native plants that have the potential to become a dominant or codominant species on the site, if their establishment and growth is not actively controlled by management interventions. Managing invasive plants before they are dominant or codominant is the key to sustained pasture production and health, especially rhizomatous species, shrubs, and trees. Certain invasive plants may or may not be classified as noxious as designated in federal, state, or county lists. Once invasive species become dominant or codominant on the site, they dominate ecological processes such as energy and nutrient cycles, and often create feedbacks, which sustain their dominance.

**Observe and record**: Note the distribution and amount of invasive species that may dominate a sites ecological processes and inhibit sustained pasture production and health.

**Relevance to DIPH**: Invasive plants specifically affect HF, BI, and LMQF. If invasive plants are associated with shifts in plant life forms – such as tall grasses, mid grasses, short grasses, forbs, shrubs, half shrubs, and trees – this compositional change on a site greatly influences infiltration and runoff dynamics (HF). Infiltration is usually highest under trees and shrubs and decreases progressively in the following order: bunchgrass, sodgrass, and bare ground (Thurow, et al., 1986). Invasive plants often significantly impact BI, namely plant composition, species diversity, community dynamics, and the processes associated with the energy and nutrient cycles. As biotic integrity degrades on pastureland, less preferable vegetation subsists, which has a direct impact on LMQF.



**Photo 24** Invasive plant species Canada Thistle in Western SD. This invasive species is spread via vehicles, humans, or animals. Once this weed is on the site, it spreads by seeds or rhizomes and will take over a pasture or meadow. It lowers the plant community diversity and degrades wildlife habitat. Biocontrol insects are available to use on Canada Thistle. Photo credit: <u>https://flic.kr/p/2khBML9</u> South Dakota NRCS. July 7, 2020.

Table 16 Generic descriptors of the five departure categories in the evaluation matrix for Invasive Plants

| Indicators             | Extreme-to-<br>Total | Moderate-to-<br>Extreme           | Moderate                             | Slight-to-<br>Moderate                                             | None-to-<br>Slight                                    |
|------------------------|----------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|
| 15. Invasive<br>Plants | Invasive<br>species  | Invasive<br>species               | Invasive<br>species                  | Invasive<br>species                                                | Invasive<br>species rare,                             |
|                        | dominate the site.   | common<br>throughout<br>the site. | scattered<br>throughout<br>the site. | present in<br>infrequent<br>disturbed<br>areas within<br>the site. | except in very<br>infrequently<br>disturbed<br>areas. |

#### 16. Production



**Photo 25** NRCS Supervisory District Conservationist Ann Fischer prepares to clip forage samples of ungrazed pasture on Hayden Ranch, Fallon County, Montana. Photo credit: <u>https://flic.kr/p/2kfqW6k</u> USDA NRCS Montana, June 2020

Production is the result of energy captured by plants through the process of photosynthesis and subject to fluctuations in climate and local weather conditions. Annual production is the net quantity of aboveground vascular plant material produced annually. Standing dead vegetation (produced in previous years) or live tissue (woody stems) not produced in the current year as annual production are not included in annual production. Standing dead vegetation can be included in the production estimate, if grown during the current year. Production directly correlates with the ecological process of energy flow. In plant ecosystems, annual production is the most important variable that represents how resources are partitioned (Whittaker, 1975).

Relevance to DIPH: Directly related to BI and LMQF

**Observe and record**: Estimate production using a method prescribed by the NRCS state grazing specialist or found in the National Range and Pasture Handbook.

| Indicators     | Extreme-to-    | Moderate-to-   | Moderate       | Slight-to-     | None-to-       |
|----------------|----------------|----------------|----------------|----------------|----------------|
|                | Total          | Extreme        |                | Moderate       | Slight         |
| 16. Production | Less than 20%  | 21–40% of      | 41–60% of      | 61–80% of      | Production     |
|                | of potential   | potential      | potential      | potential      | >80% of        |
|                | production.    | production.    | production.    | production.    | potential.     |
|                | Considering    | Considering    | Considering    | Considering    | Considering    |
|                | recent weather |
|                | conditions     | conditions     | conditions     | conditions     | conditions     |

 Table 17 Generic descriptors of the five departure categories in the evaluation matrix for Production

#### 17. Plant Vigor with an Emphasis on Reproductive Capability of Perennials

Plant vigor relates to the robustness of individual plant species in the population and is commonly represented by the size of the plant and its parts in relation to the plant's age and the local environment in which it is growing (SRM, 1999).

Reproductive capability is dependent on plant health and the ability to reproduce, given the constraints of climate and herbivory. Reproductive potential is associated with inflorescence (e.g., seed stalks) and flower production, which are the basic measures of reproductive potential for sexually reproducing plants and clonal production (e.g., tillers, rhizomes, or stolons) for vegetatively reproducing plants.



**Photo 26** This fence line contrast shows differences in plant vigor that result from fertility differences. Photo credit: Greg Brann.

Color is an indicator of plant vigor. Drought, insect damage, or prolonged (continuous) heavy usage can cause yellowing. Low fertility or poor growing conditions (e.g., saturated soils) can be indicated by pale green plants. Dark green spots under dung or urine patches contrasted with the rest of the pasture indicate low nitrogen. Frost-damaged can change color. Generally, color is a visual indicator of mineral deficiencies or excesses.

**Observe and record:** Plant color, recovery from grazing, sward density, and reproductive plant parts on desirable plants as described in the matrix. Do not rate invasive species or undesirables under this indicator.

**Table 18** Generic descriptors of the five departure categories in the evaluation matrix for Plant Vigor with an Emphasis on

 Reproductive Capability of Perennials

| Indicators                                                                               | Extreme-to-<br>Total                                                                                                                   | Moderate-to-<br>Extreme                                                                                                                                   | Moderate                                                                                                                                                                      | Slight-to-<br>Moderate                                                                                                                                   | None-to-Slight                                                                                                                  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 17. Plant Vigor<br>with an<br>Emphasis on<br>Reproductive<br>Capability of<br>Perennials | Plant<br>reproduction or<br>recovery after<br>use is extremely<br>reduced. Pale,<br>yellow or brown,<br>or severely<br>stunted plants. | Plant<br>reproduction or<br>recovery after<br>use is greatly<br>reduced.<br>Yellowish green<br>forage, or<br>moderately or<br>slightly stunted<br>plants. | Plant reproduction<br>or recovery after<br>use is moderately<br>reduced.<br>Adequate<br>recovery.<br>Yellowish and dark<br>green areas due to<br>manure and urine<br>patches. | Plant<br>reproduction or<br>recovery is<br>slightly-to-<br>moderately<br>reduced after<br>use. Good<br>recovery. Light<br>green and dark<br>green plants | Plant<br>reproduction or<br>recovery is what<br>is expected for<br>the site. Rapid<br>recovery. All<br>healthy green<br>plants. |

**Relevance to DIPH**: Plant vigor and reproductive capability are key elements associated with BI. When environmental conditions are favorable, new plant recruitment occurs to balance plant mortality. Plant community composition and resiliency of plant species are dependent on their ability to reproduce (Svejcar, et al., 2014).

#### 18. Dead or Dying Plants or Plant Parts



**Photo 28** At the end of each growing season, annual plants are expected to die and perennial plants are expected to go into dormancy. Photo credit: <u>https://flic.kr/p/2iCwzHb</u> Maryland NRCS, March 6,

Plant mortality and senescence of leaves, stems, branches, and roots are a natural phenomenon in all perennial plant communities. However, the proportion of dead or dying plants or plant parts varies considerably with various levels of disturbance over time. Dying plant parts are natural for perennial plants. Some perennial bunchgrasses tend to age as a ring with a dead center, and many live shrubs will have dead branches. Dead or dying plant parts are greatly influenced by the natural disturbance regime. The key point for this indicator is to determine departure according to the normal range of variability.

**Observe and record**: Note any signs of mortality and the functional groups affected (bunch grasses, forbs, woody species, etc.) 40 TN 190 RP 4 (November 2024) **Relevance to DIPH**: This indicator is an important factor of BI. If existing plants are either dead or dying, the integrity of the plant stand declines, and undesirable plants (e.g., weeds or invasive plants) may increase (Svejcar, et al., 2014; Pyke, 1995).

| Indicators                                    | Extreme-to-<br>Total                                                                                       | Moderate-to-<br>Extreme                                                                                     | Moderate                                                                                                  | Slight-to-<br>Moderate                                                                                      | None-to-Slight                                                          |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 18. Dead or<br>Dying Plants<br>or Plant Parts | Extensive<br>mortality,<br>dying plants, or<br>plant parts<br>concentrated<br>in one or more<br>functional | Widespread<br>mortality,<br>dying plants, or<br>plant parts<br>concentrated<br>in one or more<br>functional | Moderate<br>mortality,<br>dying plants, or<br>plant parts<br>concentrated<br>in one or more<br>functional | Occasional<br>mortality,<br>dying plants, or<br>plant parts<br>concentrated<br>in one or more<br>functional | No apparent<br>mortality,<br>dying plants,<br>plant, or plant<br>parts. |
|                                               | groups.                                                                                                    | groups.                                                                                                     | groups.                                                                                                   | groups.                                                                                                     |                                                                         |

Table 19 Generic descriptors of the five departure categories in the evaluation matrix for Dead or Dying Plants or Plant Parts

## 19. Litter Cover and Depth

Litter is dead recognizable plant material that are detached from the plant, including leaves, stems, and branches. Plant stems and seed heads that are dormant or dead but still attached to the plant are considered a dead plant part, not litter (sometimes referred to as "standing dead"). Unrecognizable plant material that is partially decomposed and smaller than 2mm is not litter but is considered duff or particulate organic matter (POM) (USDA NRCS, 2011). The longevity of litter on a site is highly dependent upon current moisture and temperature. Decomposing material (above and below ground) is the primary source of soil organic material for mineralization of organic matter. The potential amount of litter is proportional to the productivity of the ecological site, the plant community, the composition of the litter (e.g. amount of lignified material), as well as weather conditions with more litter accumulation after wet years and less accumulation after dry years.

Excessively high amounts of litter or "thatch" can interfere and slow down new tiller growth and tie up nitrogen. This can be resolved with a shorter rest period, increased diversity (especially legumes), and increased stock density.

**Observe and record**: Note amount and depth of litter either increased or decreased compared to site potential and recent weather.

**Relevance to DIPH**: HF, BI.



**Photo 29** Part the sward to observe the amount of litter that is accumulated at the soil surface. Photo credit: Greg Brann

| Table 20 | Generic descriptors | of the five departure | categories in the evaluat | tion matrix for Litter Cover | and Depth |
|----------|---------------------|-----------------------|---------------------------|------------------------------|-----------|
|          |                     |                       | 5                         |                              |           |

| Indicators       | Extreme-to-      | Moderate-to-     | Moderate         | Slight-to-       | None-to-Slight   |  |  |
|------------------|------------------|------------------|------------------|------------------|------------------|--|--|
|                  | Total            | Extreme          |                  | Moderate         |                  |  |  |
| 19. Litter Cover | Accumulation of  |  |  |
| and Depth        | litter cover and |  |  |
|                  | depth, and       |  |  |
|                  | decomposition    | decomposition    | decomposition    | decomposition    | decomposition    |  |  |
|                  | extremely out of | moderately-to-   | moderately out   | slightly out of  | as expected for  |  |  |
|                  | balance with     | extremely out of | of balance with  | balance with     | the site, and    |  |  |
|                  | current weather  | balance with     | current weather  | current weather  | with current     |  |  |
|                  | conditions.      | current weather  | conditions.      | conditions.      | weather          |  |  |
|                  |                  | conditions.      |                  |                  | conditions.      |  |  |

#### 20. Percentage Legumes

This indicator considers the proportion of legume present in a forage stand (by weight) during the growing season. Legumes can vary considerably, depending upon growing conditions, timing and intensity of grazing, and agronomic inputs.

Forage legumes in pastures have unique advantages and disadvantages for ruminant production. In comparison with grasses or cereals, the main advantages are 1) "low reliance on fertilizer nitrogen (N) inputs, 2) high voluntary intake and animal production when feed supply is non-limiting, and (3) high protein content. The main disadvantages of forage legumes are generally 1) lower persistence than

grass stands under grazing, 2) high risk of livestock bloat, and 3) difficulty to conserve as silage or hay. In comparison to grass or legume monocultures, grass and legume mixtures have particular advantages, such as more balanced feeding values, increased resource use efficiency, and increased herbage production" (Phelan, et al., 2015). Unfertilized legume-grass mixtures in pasture tend to have fewer negative environmental impacts from nutrient losses in runoff compared to grass or cerealbased pastures supplemented with N fertilizer. From an economic perspective, incorporating forage legumes with other non-legume forages can reduce N fertilizer costs.

Establishing and maintaining forage legumes in pastures vary throughout the U.S. Some soils and climates are not conducive to establishment and maintenance of legume species in the stand, and the Ecological Site pasture state narrative (when available) should discuss this dynamic in detail. If legumes are not particularly adapted to a certain region, climate, or soils, this indicator can be eliminated from the assessment.



**Photo 34** Legumes at 6% by dry weight (approx. 10% visual wet) (USDA NRCS, 2020)

Photo 34 Legumes at 15% by dry weight (approx. 30% visual wet) (USDA NRCS, 2020)

**Photo 34** Legumes at 27% by dry weight (approx. 50% visual wet). (USDA NRCS. 2020)

Although forage legumes are good sources of dietary protein – and in some cases, energy – the risk of bloat cannot be underestimated and can be a major limitation to their use. Management and available supplements can reduce risk, but some producers do not want the risk. The loss of a valuable animal can upset the economic advantages associated with legumes in the pasture.

The recommended percentage of legumes based on dry herbage weight varies in the literature (30-60 percent). Planning legume mixtures in pastures should be done carefully with the producer, and risks and liabilities should be discussed. The percent legumes indicator is based on a more conservative approach of 30-35 percent.

Producers should understand the advantages and disadvantages of using legumes in pasture systems. Therefore, this indicator contains two approaches: 1) legumes as part of the pasture management plan; and 2) legume use in accordance with management objectives.

**Observe and record**: Proportion of legumes in the plant community, by dry weight. Visual estimation of legumes cover will not correspond with actual dry weight composition (see Photo 31)

Relevance to DIPH: BI, LMQF.

Table 21 Generic descriptors of the five departure categories in the evaluation matrix for Percentage Legumes

| Indicators                                 | Extreme-to-<br>Total                                                                                                                                                                         | Moderate-to-<br>Extreme                                                                                                                                                                 | Moderate                                                                                                                                                                               | Slight-to-<br>Moderate                                                                                                                                                                | None-to-Slight                                                                                                                                                |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 20. Percentage<br>Legumes0F0F <sup>1</sup> | If ES Altered<br>Pasture State<br>supports<br>legumes, stands<br>have less than<br>2% by weight or<br>legume<br>composition<br>extremely out of<br>balance with<br>management<br>objectives. | If ES Altered<br>Pasture State<br>supports<br>legumes, stands<br>have 2–5% by<br>weight or<br>legume<br>composition<br>moderately-to-<br>extremely out of<br>balance with<br>management | If ES Altered<br>Pasture State<br>supports<br>legumes, stands<br>have 5–15% by<br>weight or<br>legume<br>composition<br>moderately out<br>of balance with<br>management<br>objectives. | If ES Altered<br>Pasture State<br>supports<br>legumes, stands<br>have 15–30% by<br>weight or<br>legume<br>composition<br>slightly out of<br>balance with<br>management<br>objectives. | If ES Altered<br>Pasture State<br>supports<br>legumes, stands<br>have 30–35% by<br>weight or<br>legume use in<br>accordance with<br>management<br>objectives. |  |  |  |  |
|                                            | composition<br>extremely out of<br>balance with<br>management<br>objectives.                                                                                                                 | composition<br>moderately-to-<br>extremely out of<br>balance with<br>management<br>objectives                                                                                           | composition<br>moderately out<br>of balance with<br>management<br>objectives.                                                                                                          | composition<br>slightly out of<br>balance with<br>management<br>objectives.                                                                                                           | accordance with<br>management<br>objectives.                                                                                                                  |  |  |  |  |

## 21. Uniformity of Use

Increasing grazing uniformity has several positive outcomes: maintenance of the forage species as a unit, manage species grazing height, minimize grazing stress on individual species, maximize animal performance and gains, and protect offsite benefits such as fisheries, wildlife habitat, and watershed resources (Bailey, 2004). Managers can increase grazing uniformity and protect sensitive areas by changing pasture attributes or by modifying animal behavior. Strategies to improve grazing distribution center around strategic water developments, salting, and fencing. Other strategies to manage distribution include fertilization, prescribed burning, shade, multi-species grazing and bale grazing.

**Observe and record**: Note areas of spot overgrazing or avoided areas and estimate area.

Relevance to DIPH: HF, BI, LMQF



**Photo 36** The appearance of this pasture demonstrates patches where forage species are rejected while others are severely grazed. Photo credit <u>https://flic.kr/p/2p9EQSw</u> NRCS Utah

<sup>&</sup>lt;sup>1</sup> Note: literature mentions maximum legume comp. at ≈ < 30-50 percent to minimize bloat potential (Canadian Agronomist, 2021; Forsythe, 2018; Wardynski, 2013; Montana State University, 2003; Gelley, 2018) Note: if bloating legumes dominate the stand, by weight, rating = Extreme to Total. Substantial risk to livestock with and without bloat prevention protocols.

Table 22 Generic descriptors of the five departure categories in the evaluation matrix for Uniformity of Use

| Indicators               | Extreme-to-<br>Total                                                                                                                                                                                                       | Moderate-to-<br>Extreme                                                                                                                                            | Moderate                                                                                                                                                    | Slight-to-<br>Moderate                                                                                                                                                                      | None-to-<br>Slight                                                                                                                             |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 21. Uniformity<br>of Use | Little-grazed<br>or ungrazed<br>patches where<br>forage species<br>are rejected<br>cover over<br>50% of the<br>area. Rejected<br>patches are<br>generally<br>connected.<br>Or<br>Uniform use<br>due to<br>overutilization. | Little-grazed<br>or ungrazed<br>patches where<br>forage species<br>are rejected<br>cover 26 to<br>50% of the<br>area. Patches<br>are<br>occasionally<br>connected. | Little-grazed<br>or ungrazed<br>patches where<br>forage species<br>are rejected<br>cover 10 to<br>25% of the<br>area. Patches<br>sporadically<br>connected. | Light-grazed<br>or ungrazed<br>and<br>unconnected<br>patches where<br>forage species<br>are rejected<br>are small and<br>isolated (<10%<br>cover). Urine<br>and dung<br>patches<br>avoided. | Uniform<br>grazing<br>throughout<br>pasture.<br>Areas where<br>forage species<br>are rejected<br>only present at<br>urine and<br>dung patches. |  |  |  |  |

## 22. Grazing and Utilization

In developing grazing management plans, consider both grazing frequency and utilization of every pasture in the system. Due to the high variability that exists throughout pastureland in the U.S., it is difficult to suggest absolute use values as they vary, depending on local climate and growing conditions, grazing systems, and management objectives. The general "rule of thumb" regarding utilization values is around 50 percent (Figure 6), which is generally considered appropriate to maintain pasture health. Temporary heavier utilization is sometimes used in grazing systems, where rest or deferment is part of the plan; but this should not be a consistent practice. Continuous heavier stocking rates are correlated with greater compaction and degradation of soil aggregates, lower infiltration, declining soil moisture capacity, and higher erosion rates (Nelson, 2012).

Stubble heights of pasture forage species are often used as measurements of use. It is important to note that stubble heights can also vary (ranges in grazing height are common), depending on the condition of the pasture, site potential, grazing system, and management objectives.

**Observe and record**: Note degree of utilization in key areas and of key species that are grazed. Also consider livestock concentration areas and trails and rate accordingly.

Relevance to DIPH: SSS, HF, BI, LMQF



**Figure 7** A graphical definition of the term "utilization" in contrast with the related terms harvest efficiency and grazing efficiency (Green & Brazee, 2012)



**Photo 37** This pasture exhibits a high degree of use with very little residual forage (short stubble heights) following grazing. Photo credit Greg Brann.

Table 23 Generic descriptors of the five departure categories in the evaluation matrix for Grazing and Utilization

| Indicators      | Extreme-to-     | Moderate-to-     | Moderate         | Slight-to-      | None-to-       |  |  |  |
|-----------------|-----------------|------------------|------------------|-----------------|----------------|--|--|--|
|                 | Total           | Extreme          |                  | Moderate        | Slight         |  |  |  |
| 22. Grazing     | Pasture         | Pasture          | Pasture          | Pasture         | Pasture        |  |  |  |
| and Utilization | severely        | utilization 65–  | utilization 60–  | utilization 50– | utilization    |  |  |  |
| Note:           | overgrazed      | 70%, plant       | 65%; current     | 60%; plant      | =<50%; plant   |  |  |  |
| Utilization     | (>70%           | height is        | utilization is   | height          | ht. meets      |  |  |  |
| percentages     | utilization),   | continually      | temporary and    | generally       | recommended    |  |  |  |
| can be          | plant height    | below            | not              | meets           | graz.ht. for   |  |  |  |
| temporarily     | continually     | recommended      | representative   | recommended     | spp.           |  |  |  |
| adjusted in     | below           | graz. Ht. for    | of continual     | graz. Ht. for   | No presence    |  |  |  |
| grazing         | recommended     | spp.             | management.      | spp.            | of livestock   |  |  |  |
| rotation        | graz. Ht. for   | Livestock        | Isolated and     | Some livestock  | concentration  |  |  |  |
| systems given   | spp.            | concentration    | unconnected      | trails and one  | areas or heavy |  |  |  |
| that rest and   | Livestock       | areas and trails | livestock        | or two small    | use areas.     |  |  |  |
| deferment are   | concentration   | cover 5–10%      | concentration    | unconnected     |                |  |  |  |
| planned.        | areas > 10% of  | of the area      | areas and trails | concentration   |                |  |  |  |
|                 | the pasture     | and drain into   | (<5% of area);   | areas.          |                |  |  |  |
|                 | and can         | water channels   | can potentially  |                 |                |  |  |  |
|                 | transport       | unbuffered.      | drain into       |                 |                |  |  |  |
|                 | contaminated    |                  | water channels   |                 |                |  |  |  |
|                 | runoff directly |                  | unbuffered.      |                 |                |  |  |  |
|                 | into water      |                  |                  |                 |                |  |  |  |
|                 | channels        |                  |                  |                 |                |  |  |  |
|                 | unbuffered.     |                  |                  |                 |                |  |  |  |

## Interpreting the Indicator Ratings – the 4 Attributes

Determination of preponderance of evidence follows the same approach as used in Pellant, et al., 2020. The 22 indicators rated on Table 3 determine the overall degree of departure for each attribute on Table 4. Determining preponderance of evidence is subjective, although some of the indicators can be supported by quantitative data if available. Examine the summary matrix columns for each of the DIPH attributes and determine what departure class represents the current condition. Often the majority of indicators in a specific departure class e.g., slight to moderate may dominate the preponderance of evidence matrix; however, important key indicators such as invasive plants, erosion, percent desirable forage plants may be in different departure classes and perhaps indicate a more significant departure from reference conditions. As a result, you may have an overall preponderance of evidences. Depending on the severity of departure of critical indicators, it is acceptable to shift the rating to higher departure class. Conclusions need to reflect current conditions and depending on the ratings of certain key indicators, they may take precedence over the overall determination.

Indicators Extreme-to-Total Moderate-to-Extreme Moderate Slight-to-Moderate None-to-Slight 1. Erosion (sheet and Numerous and Moderate in number Scarce and scattered. Current or past Moderate in number rill) frequent throughout. at frequent intervals. at infrequent intervals. Minimal rill width. formation of rills -Nearly all rills are Many rills are wide, Moderate rill width, depth, and length. none. wide, deep and long. deep, and long. Occur depth, and length. Occur in exposed Occur in exposed and in exposed areas and Occur mostly in areas, and steeper vegetated areas. in some adjacent exposed areas, and slopes. vegetated areas. steeper slopes. 2. Erosion (gullies) Sporadic or no Intermittent Occasional vegetation Vegetation on most None vegetation on gully vegetation on gully on gully banks or gully banks or bottom. banks or bottom. bottom. Occasional banks or bottom. Nick Few nickpoints and Numerous nick points. points common. nickpoints and slight minimal downcutting. Significant active bank Moderate active bank downcutting. Minimal gully depth or and bottom erosion, and bottom erosion, Moderate depth aor width. Headcuts including downcutting. including downcutting. width. Active headcuts absent. Substantial depth or absent. Significant width or width. Active headcuts depth. Active headcuts may be present. may be present. 3. Erosion, Wind-Infrequent and few. None or as expected in Extensive. Wind Common. Wind scours Occasionally present. Scoured or blowouts or scours frequently connected. Wind scours Wind scours rarely reference FSD **Depositional Areas** usually connected. Moderate soil infrequently connected. Trace connected. Minor soil amounts of soil Large soil depositions depositions around around obstructions. deposition around obstructions. deposition around obstructions. obstructions. 4. Erosion Banks bare, major More than half the About half the bank Some indication of Bank vegetation intact, (streambank or vertical down cutting, expected bank vegetation trampled; trampled bank minimal trampling or shoreline) major sloughing, little vegetation absent, active sloughing and vegetation, active sloughing. downcutting. or no bank vegetation. veg. trampled, sloughing Hydrology of riparian sloughing and vert. Hydrology of riparian downcutting, or system severely banks active erosion. system moderately vertical slopes are altered. Hydrology of riparian altered. minimal. Hydrology of system highly altered. riparian system slightly altered.

**Table 24** Evaluation matrix used to rate the 22 indicators and five departure categories of pasture health.

| Indicators               | Extreme-to-Total        | Moderate-to-Extreme      | Moderate               | Slight-to-Moderate      | None-to-Slight          |
|--------------------------|-------------------------|--------------------------|------------------------|-------------------------|-------------------------|
| 5. Water Flow Patterns   | Extensive. Long and     | More numerous and        | Lengths or widths      | Length and width        | Natural, well           |
|                          | wide. Erosional or      | widespread. Longer       | slightly to moderately | nearly match            | vegetated, or as        |
|                          | depositional areas      | and wider than           | higher than expected.  | expected. Some minor    | described in ESD        |
|                          | widespread. Usually     | expected. Erosional or   | Minor to moderate      | erosional or            |                         |
|                          | connected.              | depositional areas       | erosional or           | depositional areas.     |                         |
|                          |                         | common. Occasionally     | depositional areas.    | Rarely connected.       |                         |
|                          |                         | connected.               | Infrequently           |                         |                         |
|                          |                         |                          | connected.             |                         |                         |
| 6. Bare Ground (%)       | Substantially higher    | Much higher than         | Moderately higher      | Slightly higher than    | Amount and size of      |
|                          | than expected. Bare     | expected. Major bare     | than expected. Bare    | expected. Bare ground   | bare areas match that   |
|                          | ground patches are      | ground patches           | ground patches are     | patches are small and   | expected for the site.  |
|                          | large and frequently    | throughout stand,        | moderate in size and   | rarely connected.       | Else, no bare ground in |
|                          | connected.              | large and occasionally   | sporadically           |                         | stand.                  |
|                          |                         | connected.               | connected.             |                         |                         |
| 7. Pedestals and         | Pedestals extensive;    | Pedestals widespread;    | Pedestals common;      | Pedestals uncommon;     | None; Terracettes,      |
| Terracettes              | roots frequently        | roots commonly           | roots occasionally     | roots rarely exposed.   | none                    |
|                          | exposed. Terracettes,   | exposed. Terracettes,    | exposed. Terracettes,  | Terracettes scarce.     |                         |
|                          | if present, are         | if present, are          | if present, are        |                         |                         |
|                          | widespread.             | common.                  | uncommon.              |                         |                         |
| 8. Litter Movement       | Extreme movement of     | Moderate to extreme      | Moderate movement      | Slight movement of      | None or as described    |
| (wind or water)          | all size classes        | movement of small to     | of mostly small size   | small size classes.     | in ESD                  |
|                          | (including large).      | moderate size classes.   | classes. Small         | Minimal or no           |                         |
|                          | Significant             | Moderate                 | accumulations around   | accumulations around    |                         |
|                          | accumulations around    | accumulations around     | obstructions or in     | obstructions or in      |                         |
|                          | obstructions or in      | obstructions or in       | depressions.           | depressions.            |                         |
|                          | depressions.            | depressions.             |                        |                         |                         |
| 9, Effects of Plant      | Changes in plant        | Changes in plant         | Changes in plant       | Community               | Infiltration and runoff |
| Community                | community               | community                | community              | (functional/ structural | are as expected for     |
| Composition and          | (functional/structural  | (functional/ structural  | (functional/structural | groups) composition     | pasture state in S&T    |
| Distribution on          | groups) composition     | groups) composition      | groups) composition    | and plant distribution  | model. Plant            |
| Infiltration and Runoff. | and distribution are    | and distribution are     | and distribution are   | are associated with     | composition and         |
| * Assume that            | associated with severe  | associated with          | associated with        | moderate reduction in   | corresponding soil      |
| decreased infiltration   | reduction in            | significantly or greatly | moderate reduction in  | infiltration and slight | physical properties are |
| causes a                 | infiltration and a      | decreased infiltration   | infiltration and a     | to moderate increase    | not impeding            |
| corresponding            | significant increase in | and a large increase in  | moderate increase in   | in runoff.              | infiltration            |
| increase in runoff.      | runoff.                 | runoff.                  | runoff                 |                         |                         |
| Indicator 9 is           |                         |                          |                        |                         |                         |
| correlated with          |                         |                          |                        |                         |                         |
| Indicator 10             |                         |                          |                        |                         |                         |

| 10. Soil Surface Loss or<br>Degradation       Soil surface horizon<br>very thin to absent<br>throughout. Soil<br>surface structure<br>subsurface. No<br>buburface. No<br>buburface. No<br>buburface horizon       Severe soil loss or<br>degradation<br>throughout. Minor<br>differences in soil<br>organic matter<br>organic matter<br>organic<br>organic<br>organic matter<br>organic<br>orgonic<br>11. Forage | Indicators                     | Extreme-to-Total        | Moderate-to-Extreme    | Moderate              | Slight-to-Moderate       | None-to-Slight          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|------------------------|-----------------------|--------------------------|-------------------------|
| Degradationvery thin to absent<br>throughout. Soil<br>surface structure<br>similar to or more<br>degraded than<br>organic matter<br>organic matter<br>organic matter<br>organic matter<br>content and structure<br>between surface and<br>subsurface. No<br>difference between<br>surface and subsurface<br>and density); may<br>severely restrict root<br>penetration and<br>infitrability.degradation interspaces with some<br>degradation beneath<br>plant canopies. Soil<br>organic matter<br>content.structure shows slight,<br>especially in plant<br>interspaces. Minor<br>change in soil organic<br>matter content.or degradation<br>(Reference ESD<br>narative)11. Compaction LayerExtensive or strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infitrability.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greaty restrict root<br>penetration and<br>infitrability.Not widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greaty restrict root<br>penetration and<br>infitrability.Not widespread or<br>moderately restrict<br>root penetration and<br>infitrability.Not widespread or<br>moderately restrict root<br>penetration and<br>infitrability.Not widespread or<br>moderately restrict<br>root penetration and<br>infitrability.Not widespread or<br>moderately restrict root<br>penetration and<br>infitrability.Not widespread or<br>moderately restrict<br>root penetration and<br>infitrability.Not weakly developed<br>(thickness and<br>density); may<br>meterial or bare<br>ground.Not weakly developed<br>(thickness and<br>density); may<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.To-95% live foliar <br< td=""><td>10. Soil Surface Loss or</td><td>Soil surface horizon</td><td>Severe soil loss or</td><td>Moderate soil loss or</td><td>Slight soil loss or soil</td><td>No apparent soil loss</td></br<>                                                                                                                                                                                                                                                                                                                                                                                                  | 10. Soil Surface Loss or       | Soil surface horizon    | Severe soil loss or    | Moderate soil loss or | Slight soil loss or soil | No apparent soil loss   |
| Image: http://withingthroughout. Soil<br>surface structure<br>degraded than<br>similar to or more<br>degraded than<br>distinguishable<br>difference between<br>organic matter<br>content and structure<br>organic matter<br>organic matter<br>content is markedly<br>reduced.interspaces with some<br>degraded than<br>subsurface and subsurface<br>organic matter<br>content is markedly<br>reduced.interspaces. Minor<br>change in soil organic<br>matter content is markedly<br>reduced.(Reference ESD<br>narrative)11. Compaction LayerExtensive or strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.Widespread or<br>moderately to strongly<br>greatly restrict root<br>penetration and<br>infiltrability.Moderately<br>wellohNot widespread or<br>weakly developed<br>(thickness and<br>density); may<br>metarical or bare<br>ground.No apparent<br>compaction.No apparent<br>content.12. Live Plant Foliar<br>Cover (hydrologic and<br>prosing benefits)^2Less than 40% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Moderatel versity in<br>comparison with site<br>potential or plant<br>diversity in or<br>diversity in or<br>objectives.Moderate diversity in<br>comparison with site<br>potential or plant<br>diversity in or<br>diversity in or<br>adaptability based on<br>with site potential or<br>with site potential or<br>with site potential or<br>potential or plant<br>diversity in full<br>accordance with<br>management<br>objectives.Bosirable forage<br>potential or plant<br>objectives.High d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Degradation                    | very thin to absent     | degradation            | degradation in plant  | structure shows slight   | or degradation          |
| surface structure<br>similar to or more<br>degraded than<br>subsurface. No<br>distinguishable<br>difference between<br>surface and subsurface<br>organic matter<br>content.differences in soil<br>organic matter<br>content and structure<br>organic matter<br>content is markedly<br>reduced.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>everely testrict root<br>penetration and<br>infiltrability.Not widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>moderately restrict root<br>penetration and<br>infiltrability.Not widespread or<br>moderately restrict<br>root penetration and<br>infiltrability.Not widespread or<br>moderately restrict<br>root penetration and<br>infiltrability.Not widespread or<br>moderately restrict<br>root penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>evertely restrict root<br>penetration and<br>infiltrability.Not widespread or<br>moderately restrict<br>root penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may evently<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may evently<br>root penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may evently<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Not widespread or<br>material or bare<br>ground.Not weakly developed<br>(thickness<br>cover. Remaining is<br>either dead st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | throughout. Soil        | throughout. Minor      | interspaces with some | signs of degradation,    | (Reference ESD          |
| similar to or more<br>degraded than<br>distinguishable<br>difference between<br>surface and subsurface<br>organic matter<br>content and structure<br>between surface and<br>subsurface layers.plant canopies. Soil<br>organic matter<br>content is markedly<br>reduced.interspaces. Minor<br>change in soil organic<br>matter content.11. Compaction Layer<br>12. Live Plant Foliar<br>Cover (hydrologic and<br>erosin benefits)²Extensive or strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness and<br>density); may<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness and<br>density); may<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness and<br>density); may<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness<br>and density); may<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>woderately developed<br>(thickness<br>cover. Remaining is<br>cither dead standing<br>material or bare<br>ground.Nore than 95% live<br>foliar cover. Remaining is<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | surface structure       | differences in soil    | degradation beneath   | especially in plant      | narrative)              |
| degraded than<br>subsurface. No<br>distinguishable<br>difference between<br>surface and subsurface layers.content and structure<br>organic matter<br>content.organic matter<br>content.change in soil organic<br>matter content.11. Compaction LayerExtensive or strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Moderately<br>widespread or<br>moderately to strongly<br>developed (thickness and<br>density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Moderately<br>widespread or<br>moderately to strongly<br>developed (thickness and<br>density); may<br>moderately restrict<br>root penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>moderately restrict<br>root penetration and<br>infiltrability.No apparent<br>compaction.12. Live Plant Foliar<br>Cover (hydrologic and<br>ground.Less than 40% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.60–50% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.High diversity of<br>developed<br>developed<br>developed<br>diversity of<br>deversity in<br>comparis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | similar to or more      | organic matter         | plant canopies. Soil  | interspaces. Minor       |                         |
| subsurface. No<br>distinguishable<br>difference between<br>surface and subsurface<br>organic matter<br>content.between surface and<br>subsurface layers.content is markedly<br>reduced.matter content.11. Compaction LayerExtensive or strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>infiltrability.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may weakly<br>root penetration and<br>infiltrability.No apparent<br>compaction.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits)?Less than 40% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Cover Remaining is<br>either dead standing<br>material or bare<br>ground.TS-95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | degraded than           | content and structure  | organic matter        | change in soil organic   |                         |
| distinguishable<br>difference between<br>surface and subsurface<br>organic matter<br>content.subsurface layers.reduced.reduced.11. Compaction LayerExtensive or strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Moderately<br>widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Moderately<br>moderately to strongly<br>developed (thickness<br>and density); may<br>moderately restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.No apparent<br>compaction to<br>moderately restrict<br>root penetration and<br>infiltrability.No apparent<br>compaction to<br>moderately restrict<br>root penetration and<br>infiltrability.No apparent<br>compaction to<br>moderately restrict<br>root penetration and<br>infiltrability.12. Live Plant Foliar<br>Cover (hydrologic and<br>ersoin benefits)²Less than 40% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Moderate diversity in<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.13. Forage Plant<br>Diversity.Diversity severely<br>ukis the potential or plant<br>diversity not in<br>deversity not in<br>deversity is not<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | subsurface. No          | between surface and    | content is markedly   | matter content.          |                         |
| difference between<br>surface and subsurface<br>organic matter<br>content.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.Moderately<br>widespread or<br>woderately developed<br>(thickness and<br>density); may weakly developed<br>(thickness and<br>infiltrability.No twidespread or<br>weakly developed<br>(thickness and<br>density); may weakly<br>penetration and<br>infiltrability.No apparent<br>compaction.12. Live Plant Foliar<br>Cover (hydrologic and<br>ersion benefits)²Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.13. Forage Plant<br>biversity.Diversity severely<br>lacking in comparison<br>with site potential or<br>objectives.Low diversity in<br>comparison with site<br>potential or plant<br>diversity in comparison with site<br>potential or plant<br>management<br>objectives.More than 95% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.14. Percent Desirable <b< td=""><td></td><td>distinguishable</td><td>subsurface layers.</td><td>reduced.</td><td></td><td></td></b<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | distinguishable         | subsurface layers.     | reduced.              |                          |                         |
| surface and subsurface<br>organic matter<br>content.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Moderately to strongly<br>widespread or<br>moderately developed<br>(thickness and<br>density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>moderately developed<br>(thickness and<br>density); may<br>moderately developed<br>(thickness and<br>density); may<br>moderately developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not apparent<br>compaction.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits)²Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>groun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | difference between      |                        |                       |                          |                         |
| organic matter<br>content.organic matter<br>content.Widespread or<br>moderately to strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.Moderately<br>widespread or<br>moderately developed<br>(thickness and<br>density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>moderately developed<br>(thickness and<br>density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>moderately restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>metaration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>material or bare<br>ground.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>material or bare<br>ground.Not widespread or<br>weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>material or bare<br>ground.Not widespread or<br>moderately restrict<br>root penetration and<br>infiltrability.Not wieakly<br>density foliar<br>to cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Nore than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | surface and subsurface  |                        |                       |                          |                         |
| Image: content.reaction layerExtensive or strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.Moderately<br>widespread or<br>moderately developed<br>(thickness and<br>density); may weakly restrict root<br>penetration and<br>infiltrability.No apparent<br>compaction.No apparent<br>compaction.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits)2Less than 40% live<br>foliar cover. Remaining is<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>material or bare<br>potential or plant<br>diversity in not<br>objectives.More than 95% live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | organic matter          |                        |                       |                          |                         |
| 11. Compaction LayerKetensive or strongly<br>developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.Widespread or<br>moderately to strongly<br>widespread or<br>moderately developed<br>(thickness and<br>density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>greatly restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may<br>greatly restrict<br>penetration and<br>infiltrability.Not widespread or<br>weakly developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>weakly<br>desisty); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>moderately developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.Not widespread or<br>moderately restrict<br>penetration and<br>infiltrability.Not widespread or<br>moderately restrict<br>penetration and<br>infiltrability.Not weakly<br>desisto flam<br>cov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | content.                |                        |                       |                          |                         |
| developed (thickness<br>and density); may<br>severely restrict root<br>penetration and<br>infiltrability.moderately to strongly<br>moderately developed<br>(thickness and<br>density); may<br>moderately restrict root<br>penetration and<br>infiltrability.weakly developed<br>(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.compaction.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits)2Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.60–75% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Moderately restrict<br>cover. Remaining is<br>cover. Remaining is<br>cover. Remaining is<br>cover. Remaining is<br>cover. Remaining is<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11. Compaction Layer           | Extensive or strongly   | Widespread or          | Moderately            | Not widespread or        | No apparent             |
| and density); may<br>severely restrict root<br>penetration and<br>infiltrability.developed (thickness<br>and density); may<br>greatly restrict root<br>penetration and<br>infiltrability.moderately developed<br>(thickness and<br>density); may<br>moderately restrict<br>root penetration and<br>infiltrability.(thickness and<br>density); may weakly<br>restrict root<br>penetration and<br>infiltrability.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits) 2Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.60–75% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.13. Forage Plant<br>Diversity.Diversity severely<br>lacking in comparison<br>with site potential or<br>objectives.Low diversity in<br>other with site potential or plant<br>diversity in toil<br>accordance with<br>management<br>objectives.Moderate diversity in<br>optimum with<br>diversity is not<br>optimum with<br>diversity is somewhat<br>lacking with<br>management<br>objectives.High diversity for<br>diversity is somewhat<br>lacking with<br>management<br>objectives.14. Percent Desirable<br><td></td> <td>developed (thickness</td> <td>moderately to strongly</td> <td>widespread or</td> <td>weakly developed</td> <td>compaction.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | developed (thickness    | moderately to strongly | widespread or         | weakly developed         | compaction.             |
| severely restrict root<br>penetration and<br>infiltrability.and density); may<br>greatly restrict root<br>penetration and<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | and density); may       | developed (thickness   | moderately developed  | (thickness and           |                         |
| penetration and<br>infiltrability.greatly restrict root<br>penetration and<br>infiltrability.density); may<br>moderately restrict<br>root penetration and<br>infiltrability.restrict root<br>penetration and<br>infiltrability.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits)?Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.60–75% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.13. Forage Plant<br>Diversity.<br>Note: Legumes'<br>adaptability based on<br>with site potential or<br>site in ESD.Diversity severely<br>lacking in comparison<br>with site potential or<br>objectives.Low diversity in<br>optential or plant<br>diversity not in<br>diversity in totin<br>diversity is not<br>objectives.Diversity singhtly<br>diversity is somewhat<br>management<br>objectives.High diversity in<br>diversity is somewhat<br>management<br>objectives.14. Percent Desirable<br>Forage Plants (for<br>identified livestorkDesirable forage<br>species 20% dry<br>weightDesirable forage<br>species 20% dry<br>weightDesirable forage<br>species 20-40% dry<br>weightDesirable forage<br>species 20% dry<br>weightDesirable forage<br>species 20% dry<br>weightDesirable forage<br>species 20% dry<br>weightDiversity dry<br>dry<br>species 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | severely restrict root  | and density); may      | (thickness and        | density); may weakly     |                         |
| Infiltrability.penetration and<br>infiltrability.moderately restrict<br>root penetration and<br>infiltrability.penetration and<br>infiltrability.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits)²Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.13. Forage Plant<br>Diversity.Diversity severely<br>lacking in comparison<br>with site potential or<br>objectives.Low diversity in<br>other sity not in<br>accordance with site<br>objectives.Moderate diversity in<br>comparison with site<br>potential or plant<br>diversity is not<br>objectives.Diversity sightly<br>diversity is somewhat<br>lacking with<br>management<br>objectives.High diversity in<br>diversity is somewhat<br>lacking with<br>management<br>objectives.14. Percent Desirable<br>Forage Plants (for<br>weightDesirable forage<br>species 20% dry<br>weightDesirable forage<br>species 20–40% dry<br>weightDesirable forage<br>species 20–40% dry<br>weightDesirable forage<br>species 60–80% dry<br>weig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | penetration and         | greatly restrict root  | density); may         | restrict root            |                         |
| Infiltrability.root penetration and<br>infiltrability.infiltrability.12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits) 2Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.Standing<br>either dead standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.Standing<br>either dead standing<br>material or bare<br>ground.Standing<br>either dead standing<br>material or bare<br>ground.Standing<br>material or bare<br>ground.Standing<br>is either dead standing<br>material or bare<br>ground.Standing<br>is either dead standing<br>material or bare<br>ground.Standing<br>is either dead stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | infiltrability.         | penetration and        | moderately restrict   | penetration and          |                         |
| 12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits) 2Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.13. Forage Plant<br>Diversity.<br>Note: Legumes'<br>adaptability based on<br>with site potential or<br>biectives.Diversity severely<br>Low diversity in<br>objectives.Low diversity in<br>comparison with site<br>potential or plant<br>diversity in to in<br>accordance with<br>management<br>objectives.Diversity soverely<br>low diversity in to in<br>accordance with<br>management<br>objectives.Diversity in full<br>accordance with<br>management<br>objectives.Diversity is not<br>optimum with<br>management<br>objectives.Diversity in full<br>accordance with<br>management<br>objectives.accordance with<br>management<br>objectives.Desirable forage<br>species 20–40% dry<br>weightDesirable forage<br>species 20–40% dry<br>weightDesirable forage<br>species 40–60% dry<br>weightDesir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                         | infiltrability.        | root penetration and  | infiltrability.          |                         |
| 12. Live Plant Foliar<br>Cover (hydrologic and<br>erosion benefits) 2Less than 40% live<br>foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.40–60% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.75–95% live foliar<br>cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>is either dead standing<br>material or bare<br>ground.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.13. Forage Plant<br>Diversity.Diversity severely<br>lacking in comparison<br>with site potential or<br>objectives.Low diversity in<br>potential or plant<br>diversity is not<br>optimum with<br>management<br>objectives.Diversity is sone<br>potential or plant<br>diversity is not<br>objectives.More than 95% live<br>foliar cover. Remaining is<br>either dead standing<br>material or bare<br>ground.14. Percent Desirable<br>Forage Plants (for<br>identified livestockDesirable forage <b< td=""><td></td><td></td><td></td><td>infiltrability.</td><td></td><td></td></b<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                         |                        | infiltrability.       |                          |                         |
| Cover (hydrologic and<br>erosion benefits)2foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.cover. Remaining is<br>either dead standing<br>material or bare<br>ground.foliar cover. Remaining<br>is either dead standing<br>material or bare<br>ground.13. Forage Plant<br>Diversity.Diversity severely<br>lacking in comparison<br>with site potential or<br>objectives.Low diversity in<br>comparison with site<br>potential or plant<br>diversity in to<br>objectives.Moderate diversity in<br>comparison with site<br>potential or plant<br>diversity is not<br>objectives.Diversity slightly<br>decreased in<br>diversity in full<br>accordance with<br>management<br>objectives.High diversity of<br>desirable<br>diversity is not<br>objectives.14. Percent Desirable<br>Forage Plants (for<br>weightDesirable forage<br>species <20% dry<br>weightDesirable forage<br>species 20–40% dryDesirable forage<br>species 40–60% dry<br>weightDesirable forage<br>species 40–60% dryDesirable forage<br>species 40–60% dry<br>weightDesirable forage<br>species 40–60% dryDesirable forage<br>species 40–60% dryDesirable forage<br>species 40–60% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12. Live Plant Foliar          | Less than 40% live      | 40–60% live foliar     | 60–75% live foliar    | 75–95% live foliar       | More than 95% live      |
| erosion benefits)2is either dead standing<br>material or bare<br>ground.either dead standing<br>material or bare<br>ground.either dead standing<br>material or bare<br>ground.is either dead standing<br>herestry is com<br>to potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cover (hydrologic and          | foliar cover. Remaining | cover. Remaining is    | cover. Remaining is   | cover. Remaining is      | foliar cover. Remaining |
| material or bare<br>ground.material or bare<br>ground.material or bare<br>ground.material or bare<br>ground.material or bare<br>ground.material or bare<br>ground.13. Forage PlantDiversity severely<br>lacking in comparison<br>with site potential or<br>adaptability based on<br>what is expected for<br>site in ESD.Diversity severely<br>lacking in comparison<br>with management<br>objectives.Low diversity in<br>comparison with site<br>potential or plant<br>diversity not in<br>accordance with<br>management<br>objectives.Diversity sightly<br>decreased in<br>diversity is not<br>optimum with<br>management<br>objectives.High diversity of<br>desirable forage plants<br>in stand or plant<br>diversity in full<br>accordance with<br>management<br>objectives.Diversity is not<br>optimum with<br>management<br>objectives.Diversity is somewhat<br>accordance with<br>management<br>objectives.accordance with<br>management<br>objectives.potential or plant<br>optimum with<br>management<br>objectives.diversity in full<br>accordance with<br>management<br>objectives.14. Percent Desirable<br>Forage Plants (for<br>identified livestockDesirable forage<br>species <20% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erosion benefits) <sup>2</sup> | is either dead standing | either dead standing   | either dead standing  | either dead standing     | is either dead standing |
| ground.ground.ground.ground.ground.ground.ground.13. Forage PlantDiversity severelyLow diversity inModerate diversity inDiversity slightlyHigh diversity ofDiversity.lacking in comparisoncomparison with sitecomparison with siteDiversity slightlydecreased indesirable forage plantsNote: Legumes'with site potential orpotential or plantpotential or plantdiversity is notpotential or plantdiversity is somewhatadaptability based onwith managementdiversity not inaccordance withoptimum withdiversity is somewhataccordance withsite in ESD.Desirable forageDesirable forageDesirable forageDesirable forageDesirable forage14. Percent DesirableDesirable forageSpecies 20–40% dryspecies 20–40% dryspecies 40–60% dryspecies 60–80% dryspecies exceed 80%identified livestockweightweightweightweightdry weightdry weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | material or bare        | material or bare       | material or bare      | material or bare         | material or bare        |
| 13. Forage Plant<br>Diversity.Diversity severely<br>lacking in comparison<br>with site potential or<br>adaptability based on<br>what is expected for<br>site in ESD.Diversity severely<br>lacking in comparison<br>with site potential or<br>objectives.Low diversity in<br>comparison with site<br>potential or plant<br>diversity not in<br>accordance with<br>management<br>objectives.Moderate diversity in<br>comparison with site<br>potential or plant<br>diversity is not<br>optimum with<br>management<br>objectives.Diversity slightly<br>decreased in<br>comparison with site<br>potential or plant<br>diversity is not<br>optimum with<br>management<br>objectives.High diversity of<br>desirable<br>desirable<br>potential or plant<br>diversity in full<br>accordance with<br>management<br>objectives.High diversity of<br>desirable<br>potential or plant<br>diversity in full<br>accordance with<br>management<br>objectives.High diversity of<br>desirable<br>desirable forage<br>potential or plant14. Percent Desirable<br>Forage Plants (for<br>identified livestockDesirable forage<br>species <20% dry<br>weightDesirable forage<br>species 20–40% dry<br>weightDesirable forage<br>species 40–60% dryDesirable forage<br>species 40–60% dry<br>weightDesirable forage<br>species 40–60% dryDesirable forage<br>species 40–60% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | ground.                 | ground.                | ground.               | ground.                  | ground.                 |
| Diversity.lacking in comparison<br>with site potential or<br>adaptability based on<br>what is expected for<br>site in ESD.lacking in comparison<br>with site potential or<br>potential or plant<br>diversity not in<br>accordance with<br>management<br>objectives.comparison with site<br>potential or plant<br>diversity is not<br>optimum with<br>management<br>objectives.decreased in<br>comparison with site<br>potential or plant<br>diversity is not<br>objectives.decreased in<br>comparison with site<br>management<br>objectives.decreased in<br>comparison with site<br>potential or plant<br>diversity is not<br>objectives.decreased in<br>comparison with site<br>management<br>objectives.decreased in<br>comparison with site<br>management<br>objectives.decreased in<br>comparison with site<br>management<br>objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13. Forage Plant               | Diversity severely      | Low diversity in       | Moderate diversity in | Diversity slightly       | High diversity of       |
| Note: Legumes'<br>adaptability based on<br>what is expected for<br>site in ESD.with site potential or<br>potential or plant<br>diversity not in<br>accordance with<br>management<br>objectives.potential or plant<br>diversity is not<br>optimum with<br>management<br>objectives.comparison with site<br>potential or plant<br>diversity is not<br>optimum with<br>management<br>objectives.in stand or plant<br>diversity is full<br>accordance with<br>management<br>objectives.14. Percent Desirable<br>Forage Plants (for<br>identified livestockDesirable forage<br>species <20% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diversity.                     | lacking in comparison   | comparison with site   | comparison with site  | decreased in             | desirable forage plants |
| adaptability based on<br>what is expected for<br>site in ESD.with management<br>objectives.diversity not in<br>accordance with<br>management<br>objectives.diversity is not<br>optimum with<br>management<br>objectives.potential or plant<br>diversity is somewhat<br>lacking with<br>management<br>objectives.diversity in full<br>accordance with<br>management<br>objectives.14. Percent Desirable<br>Forage Plants (for<br>identified livestockDesirable forage<br>species <20% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note: Legumes'                 | with site potential or  | potential or plant     | potential or plant    | comparison with site     | in stand or plant       |
| what is expected for<br>site in ESD.       objectives.       accordance with<br>management<br>objectives.       optimum with<br>management<br>objectives.       diversity is somewhat<br>lacking with<br>management<br>objectives.       accordance with<br>management<br>objectives.         14. Percent Desirable<br>Forage Plants (for<br>identified livestock       Desirable forage<br>species <20% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | adaptability based on          | with management         | diversity not in       | diversity is not      | potential or plant       | diversity in full       |
| site in ESD.       management       management       management       lacking with       management         objectives.       objectives.       objectives.       management       objectives.       objectives.         14. Percent Desirable       Desirable forage       species 20–40% dry       species 40–60% dry       species 60–80% dry       species exceed 80%         identified livestock       weight       weight       weight       weight       dry weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | what is expected for           | objectives.             | accordance with        | optimum with          | diversity is somewhat    | accordance with         |
| Objectives.     Objectives.     management<br>objectives.     Objectives.       14. Percent Desirable     Desirable forage     Desirable forage     Desirable forage       Forage Plants (for     species <20% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | site in ESD.                   |                         | management             | management            | lacking with             | management              |
| 14. Percent Desirable       Desirable forage       Desirable forage       Desirable forage       Desirable forage       Desirable forage         Forage Plants (for       species <20% dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                         | objectives.            | objectives.           | management               | objectives.             |
| Forage Plants (for       species <20% dry       species 20–40% dry       species 40–60% dry       species 60–80% dry       species exceed 80%         identified livestock       weight       weight       weight       dry weight       dry weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 Percent Desirable           | Desirable forage        | Desirable forage       | Desirable forage      | Desirable forage         | Desirable forage        |
| identified livestock weight weight weight weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Forage Plants (for             | species <20% dry        | species 20–40% drv     | species 40–60% drv    | species 60–80% drv       | species exceed 80%      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | identified livestock           | weight                  | weight                 | weight                | weight                   | dry weight              |
| class)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | class)                         |                         |                        |                       |                          |                         |

<sup>&</sup>lt;sup>1</sup> Note: 60 percent cover has been shown to be the breakpoint for foliar cover where soil surface is relatively protected (Gifford, 1985; Thurow, 1991; Spaeth, et al., 2022). 50 TN 190 RP 4 (November 2024)

| Indicators              | Extreme-to-Total       | Moderate-to-Extreme    | Moderate               | Slight-to-Moderate       | None-to-Slight         |
|-------------------------|------------------------|------------------------|------------------------|--------------------------|------------------------|
| 15. Invasive Plants     | Invasive species       | Invasive species       | Invasive species       | Invasive species         | Invasive species rare, |
|                         | dominate the site.     | common throughout      | scattered throughout   | present in infrequent    | except in very         |
|                         |                        | the site.              | the site.              | disturbed areas within   | infrequently disturbed |
|                         |                        |                        |                        | the site.                | areas.                 |
| 16. Production          | Less than 20% of       | 21–40% of potential    | 41–60% of potential    | 61–80% of potential      | Production >80% of     |
|                         | potential production.  | production.            | production.            | production.              | potential. Considering |
|                         | Considering recent     | Considering recent     | Considering recent     | Considering recent       | recent weather         |
|                         | weather conditions     | weather conditions     | weather conditions     | weather conditions       | conditions             |
| 17. Plant Vigor with an | Plant reproduction or  | Plant reproduction or  | Plant reproduction or  | Plant reproduction or    | Plant reproduction or  |
| Emphasis on             | recovery after use is  | recovery after use is  | recovery after use is  | recovery is slightly-to- | recovery is what is    |
| Reproductive            | extremely reduced.     | greatly reduced.       | moderately reduced.    | moderately reduced       | expected for the site. |
| Capability of           | Pale, yellow or brown, | Yellowish green        | Adequate recovery.     | after use. Good          | Rapid recovery. All    |
| Perennials              | or severely stunted    | forage, or moderately  | Yellowish and dark     | recovery. Light green    | healthy green plants.  |
|                         | plants.                | or slightly stunted    | green areas due to     | and dark green plants    |                        |
|                         |                        | plants.                | manure and urine       | present                  |                        |
|                         |                        |                        | patches.               |                          |                        |
| 18. Dead or Dying       | Extensive mortality,   | Widespread mortality,  | Moderate mortality,    | Occasional mortality,    | No apparent mortality, |
| Plants or Plant Parts   | dying plants or plant    | dying plants, plant or |
|                         | parts concentrated in  | parts concentrated in  | parts concentrated in  | parts concentrated in    | plant parts.           |
|                         | one or more            | one or more functional | one or more            | one or more              |                        |
|                         | functional groups.     | groups.                | functional groups.     | functional groups.       |                        |
| 19. Litter Cover and    | Accumulation of litter | Accumulation of litter | Accumulation of litter | Accumulation of litter   | Accumulation of litter |
| Depth                   | cover and depth, and     | cover and depth, and   |
|                         | decomposition          | decomposition          | decomposition          | decomposition slightly   | decomposition as       |
|                         | extremely out of       | moderately-to-         | moderately out of      | out of balance with      | expected for the site, |
|                         | balance with current   | extremely out of       | balance with current   | current weather          | and with current       |
|                         | weather conditions.    | balance with current   | weather conditions.    | conditions.              | weather conditions.    |
|                         |                        | weather conditions.    |                        |                          |                        |

| Indicators              | Extreme-to-Total                                                                        | Moderate-to-Extreme     | Moderate                                                                                                        | Slight-to-Moderate       | None-to-Slight         |
|-------------------------|-----------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|
| 20. Percentage          | If ES Altered Pasture                                                                   | If ES Altered Pasture   | If ES Altered Pasture                                                                                           | If ES Altered Pasture    | If ES Altered Pasture  |
| Legumes <sup>3</sup>    | State supports                                                                          | State supports          | State supports                                                                                                  | State supports           | State supports         |
|                         | legumes, stands have                                                                    | legumes, stands have    | legumes, stands have                                                                                            | legumes, stands have     | legumes, stands have   |
|                         | less than 2% by weight                                                                  | 2–5% by weight or       | 5–15% by weight or                                                                                              | 15–30% by weight or      | 30–35% by weight or    |
|                         | or legume                                                                               | legume composition      | legume composition                                                                                              | legume composition       | legume use in          |
|                         | composition extremely                                                                   | moderately-to-          | moderately out of                                                                                               | slightly out of balance  | accordance with        |
|                         | out of balance with                                                                     | extremely out of        | balance with                                                                                                    | with management          | management             |
|                         | management                                                                              | balance with            | management                                                                                                      | objectives.              | objectives.            |
|                         | objectives.                                                                             | management              | objectives.                                                                                                     |                          |                        |
|                         |                                                                                         | objectives.             |                                                                                                                 |                          |                        |
| 21. Uniformity of Use   | Little-grazed or                                                                        | Little-grazed or        | Little-grazed or                                                                                                | Light-grazed or          | Uniform grazing        |
|                         | ungrazed patches                                                                        | ungrazed patches        | ungrazed patches                                                                                                | ungrazed and             | throughout pasture.    |
|                         | where forage species                                                                    | where forage species    | where forage species                                                                                            | unconnected patches      | Areas where forage     |
|                         | are rejected cover                                                                      | are rejected cover 26   | are rejected cover 10                                                                                           | where forage species     | species are rejected   |
|                         | over 50% of the area.                                                                   | to 50% of the area.     | to 25% of the area.                                                                                             | are rejected are small   | only present at urine  |
|                         | Rejected patches are                                                                    | Patches are             | Patches sporadically                                                                                            | and isolated (<10%       | and dung patches.      |
|                         | generally connected or                                                                  | occasionally            | connected.                                                                                                      | cover). Urine and dung   |                        |
|                         | uniform use due to                                                                      | connected.              |                                                                                                                 | patches avoided.         |                        |
|                         | overutilization.                                                                        |                         |                                                                                                                 |                          |                        |
| 22. Grazing and         | Pasture severely                                                                        | Pasture utilization 65– | Pasture utilization 60–                                                                                         | Pasture utilization 50–  | Pasture utilization    |
| Utilization             | overgrazed (>70%                                                                        | 70%, plant height is    | 65%; current                                                                                                    | 60%; plant height        | =<50%; plant ht.       |
| Note: Utilization       | utilization), plant                                                                     | continually below       | utilization is                                                                                                  | generally meets          | meets recommended      |
| percentages can be      | height continually                                                                      | recommended graz.       | temporary and not                                                                                               | recommended graz.        | graz.ht. for spp. No   |
| temporarily adjusted    | below recommended                                                                       | Ht. for spp. Livestock  | representative of                                                                                               | Ht. for spp. Some        | presence of livestock  |
| in grazing rotation     | graz. Ht. for spp.                                                                      | concentration areas     | continual                                                                                                       | livestock trails and one | concentration areas or |
| systems given that rest | Livestock                                                                               | and trails cover 5–10%  | management. Isolated                                                                                            | or two small             | heavy use areas.       |
| or determent are        | concentration areas >                                                                   | of the area and drain   | and unconnected                                                                                                 | unconnected              |                        |
| planned.                | 10% of the pasture                                                                      | into water channels     | livestock                                                                                                       | concentration areas.     |                        |
|                         | and can transport                                                                       | unbutterea.             | concentration areas                                                                                             |                          |                        |
|                         | contaminated runoff                                                                     |                         |                                                                                                                 |                          |                        |
|                         | channels unbuffered                                                                     |                         | drain into water                                                                                                |                          |                        |
|                         | channels unbuttered.                                                                    |                         | abannala unbuffarad                                                                                             |                          |                        |
|                         | and can transport<br>contaminated runoff<br>directly into water<br>channels unbuffered. | unbuffered.             | concentration areas<br>and trails (<5% of<br>area); can potentially<br>drain into water<br>channels unbuffered. |                          |                        |

<sup>&</sup>lt;sup>3</sup> Note: literature mentions maximum legume comp. at ≈ < 30-50 percent to minimize bloat potential (Canadian Agronomist, 2021; Forsythe, 2018; Wardynski, 2013; Montana State University, 2003; Gelley, 2018) Note: if bloating legumes dominate the stand, by weight, rating = Extreme to Total. Substantial risk to livestock with and without bloat prevention protocols.

Fields with high legume composition should be considered for hayland.

<sup>52</sup> TN 190 RP 4 (November 2024)

# Appendix: Evaluation Sheet

Determining Indicators of Pasture Health Evaluation Sheet Part A

| Evaluation Sheet ID (Landowner, Farm, r     | anch etc.).                               |
|---------------------------------------------|-------------------------------------------|
| Management Unit:                            |                                           |
| Observer(s):                                | Date:                                     |
|                                             | location                                  |
| Ecological Site ID and Code:                | Location                                  |
| Pasture State Narrative (V/N):              |                                           |
| Soil Survey:                                | Man Unit: Component:                      |
| Surface Soil texture:                       | Map onit. Component.                      |
| Position by GPS2 V/N:                       | Photos Taken? V/N·                        |
| GPS Location: Lat:                          |                                           |
| Location Description:                       | Long.                                     |
| Office                                      | Pasture Size (ac):                        |
| Size (ac) represented by DIPH sample:       | No. samples needed:                       |
| Criteria used to select evaluation area:    | No. samples needed.                       |
|                                             |                                           |
|                                             |                                           |
|                                             | History                                   |
| l and treatments or conservation practic    | es annlied:                               |
| Resource Concerns:                          |                                           |
| Stubble ht : Ut                             | ilization %: Having history:              |
| Historic Grazing Intensity (low med high)   | Current Grazing Intensity (low med high): |
| Grazing system:                             |                                           |
| Land use history:                           |                                           |
| Offiste influences on land:                 |                                           |
| Natural Disturbances and time since (list): |                                           |
| Evalu                                       | uation Area description data              |
| Slope                                       | Slope shape (concave, convex, linear)     |
| Flevation                                   | Aspect                                    |
| Avg Annual Precipitation (in)               | Precipitation range (in):                 |
| Precip to date:                             | % of normal to date:                      |
| Seasonal Climate notes:                     |                                           |
|                                             |                                           |
|                                             |                                           |
| Dominant forage species and estimated comp  | position:                                 |
|                                             |                                           |
|                                             |                                           |
|                                             |                                           |
|                                             | Supporting data                           |
| Representative climate station:             |                                           |
| Foliar Cover (% composition): 0%            | Ground Cover (%): Dෆ්                     |
| Bunchgrasses:                               | Bare Ground (%):                          |
| Sod grasses:                                | Litter:                                   |
| Forbs:                                      | Rock:                                     |
| Shrubs & Trees:                             | Biotic Crust:                             |
|                                             | Basal plant cover:                        |

53 TN 190 RP 4 (November 2024)

|          | DETERMINING INDICATORS OF PASTURE HEALTH EVALUATION SHEET Page 1 of 2   |           |              |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
|----------|-------------------------------------------------------------------------|-----------|--------------|------------------|------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
|          | Cooperator:                                                             |           |              |                  |      | Conser                                                                    | vationist:                                                                                                                                                                                                                              |       |  |  |  |  |
| Ev       | aluation Area:                                                          |           |              |                  |      |                                                                           | Date:                                                                                                                                                                                                                                   |       |  |  |  |  |
| ]        | Dominant Soil:                                                          |           |              | _                |      |                                                                           | Location:                                                                                                                                                                                                                               |       |  |  |  |  |
|          | Departure from Expected                                                 |           | Co           | de               |      | Instructions for Evaluation Sheet:                                        |                                                                                                                                                                                                                                         |       |  |  |  |  |
|          | None to Slight<br>Slight to Moderate<br>Moderate<br>Moderate to Extreme |           | N<br>S-<br>M | -S<br>•M<br>•I-E |      | (1) Assign II<br>(2) In the fo<br>column for<br>(3) Assign o<br>evidence. | <ul> <li>(2) In the four grids on page 2, write the indicator number in the column for each indicator that is applicable to the attribute.</li> <li>(3) Assign overall rating for each attribute based on preponde evidence.</li> </ul> |       |  |  |  |  |
| <u> </u> | Extreme to Total                                                        |           | <u>E</u> -   | -T               |      | (4) Justify e                                                             | 4) Justify each attribute rating in writing.                                                                                                                                                                                            |       |  |  |  |  |
| Inc      | licators                                                                | Attribute |              |                  |      | Rating                                                                    |                                                                                                                                                                                                                                         | Notes |  |  |  |  |
| 1        | Erosion (Sheet and Rill)                                                | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 2        | Erosion (Gullies)                                                       | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 3        | Erosion (Wind)                                                          | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 4        | Erosion (Streambank) if<br>present                                      | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 5        | Water-flow patterns                                                     | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 6        | Bare Ground %                                                           | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 7        | Pedestals and Terracettes                                               | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 8        | Litter movement                                                         | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 9        | Effect on infiltration and runoff                                       |           | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 10       | Soil Surface loss or degradation                                        | SSS       | HF           | BI               |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 11       | Compaction Layer                                                        | SSS       | HF           | BI               |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 12       | Plant Foliar Cover                                                      | SSS       | HF           |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 13       | Forage Plant Diversity                                                  |           |              | ВІ               | LMQF |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 14       | % Desirable Forage Plants                                               |           |              |                  | lmqf |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 15       | Invasive Plants                                                         |           |              | ві               | lmqf |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 16       | Production                                                              |           |              | ві               | lmqf |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 17       | Plant Vigor w/ emphasis                                                 |           |              | BI               |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 18       | Dead or Dying Plants/Parts                                              |           |              | BI               |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 19       | Litter cover and Depth                                                  |           | HF           | BI               |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 20       | % legume                                                                |           |              | BI               | lmqf |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 21       | Uniformity of Use                                                       |           | HF BI LMQF   |                  |      |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |
| 22       | Grazing and Utilization                                                 | SSS       | HF           | BI               | LMQF |                                                                           |                                                                                                                                                                                                                                         |       |  |  |  |  |

| C | DETERMINING INDICATORS OF PASTURE HEALTH EVALUATION SHEET Page 2 of 2 |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|---|-----------------------------------------------------------------------|---------|--------|--------|------|--|-----|---------|--------|--------|------|-----------------------|-------------------|--------|--------|----------------------|---|---------------|--------|---------|--------|-----|-----|
|   | Soil                                                                  | & Site  | e Stał | oility | (12) |  | Hyd | rologi  | c Fun  | nction | (15) | Biotic Integrity (11) |                   |        |        | Livestock Management |   |               |        |         |        |     |     |
|   | E-T                                                                   | M-E     | Μ      | S-M    | N-S  |  | E-T | M-E     | Μ      | S-M    | N-S  |                       | E-T M-E M S-M N-S |        |        |                      | ļ | C             | Qualit | y Fac   | tor (7 | )   |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | ļ             | E-T    | M-E     | М      | S-M | N-S |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | ļ             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      | -                     |                   |        |        |                      |   | ł             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | ł             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | ł             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | $\frac{1}{2}$ |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | ł             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | ł             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | ł             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | t             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | 1             |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   | 1             |        |         |        |     |     |
|   | Over                                                                  | rall Ra | ating: |        |      |  | Ove | rall Ra | ating: |        |      |                       | Over              | all Ra | ating: |                      |   |               | Over   | rall Ra | ating: |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |
|   |                                                                       |         |        |        |      |  |     |         |        |        |      |                       |                   |        |        |                      |   |               |        |         |        |     |     |

# Appendix: Case Study Example I (cool season plant species)



Photo 38 New England cool season pasture for case study 1.

**Table 25** Determining Indicators of Pasture Health Evaluation Sheet for Case Study I Cool Season PlantSpeciesPhoto 39New England cool season pasture for case study 1.

#### General setting description

The setting for this case study depicted in Photo 34. Table 6 contains details gathered about the site during a field visit for conservation planning purposes, including a brief inventory plant species composition based on ocular estimation.

#### Soils

The Boothbay series consists of very deep, moderately well drained soils that formed in glaciolacustrine or glaciomarine deposits on lake plains and marine terraces. Estimated saturated hydraulic conductivity is moderately high in the surface and moderately high or moderately low in the subsoil and substratum. Slope ranges from 3 to 25 percent. Mean annual precipitation is about 1120 mm. Mean annual temperature is about 6 degrees C.

| Evaluation Sheet ID (Landowr        | ner, Farm, r    | anch, etc.): Li  | iberty Job  | 14504                             |               |
|-------------------------------------|-----------------|------------------|-------------|-----------------------------------|---------------|
| Management Unit: South for          | 'ty             |                  |             |                                   |               |
| Observer(s): Sammy Sa               | sil             | D                | Date:       | 4-Jul-26                          |               |
|                                     |                 | Locatio          | on          |                                   |               |
| Ecological Site ID and Code:        | F143XY40        | n Clay           |             |                                   |               |
| Pasture State Narrative (Y/N)       | ): STM mode     | l diagram but v  | no narrati  | VC                                |               |
| Soil Survey: Lamiolle C             | County          | Map Unit: 2      | .34         | Component:                        | Boothbay      |
| Surface Soil texture: Silt loam     |                 |                  |             |                                   |               |
| Position by GPS? Y/N:               | Yes             | Р                | hotos Ta    | iken?Y/N: Yes                     |               |
| GPS Location: Lat:                  | 119.3246        | 97 Lo            | ong:        | 44.323661                         |               |
| Location Description:               | Across the      | ; road from the  | old barn    | by the tree where the dog was     |               |
| Office: Franklinfield               |                 | Р                | asture S    | <b>ize (ac):</b> 20               |               |
| Size (ac) represented by DIPH       | l sample:       | 20               |             | No. samples needed: 1             |               |
| Criteria used to select evaluat     | tion area:      | Central location | on of the   | pasture, representative of the    | majority of   |
| acres in slope, aspect, grazing use | e, distance to  | water and sha    | ade         |                                   |               |
|                                     |                 |                  |             |                                   |               |
|                                     |                 | Histo            | ry          |                                   |               |
| Land treatments or conservat        | tion practice   | es applied: Pa   | ortable st  | ockwater and fence                |               |
| Resource Concerns: Plant com        | munity compo    | osition (inadequ | iate diver  | sity, lack of legumes)            |               |
| Residual (stubble) ht 5"            | Ut              | ilization %:     |             | Haying history:                   | none          |
| Historic Grazing Intensity (low, m  | ned, high):     | Med. C           | urrent Gr   | azing Intensity (low, med, high): | Med.          |
| Grazing system: 1 week us           | e per paddocl   | k (~8 paddocks   | 5) during t | he 6 month grazing season         |               |
| Land use history: Homester          | aded in 1700's  | , some row crop  | os and hau  | y but only grazed now for decade: | 5             |
| Offiste influences on land:         | none            |                  |             |                                   |               |
| Natural Disturbances and time si    | nce (list):     | none             |             |                                   |               |
|                                     | Evalu           | ation Area de    | escriptic   | on data                           |               |
| Slope 570                           |                 | S                | lope sha    | pe (concave, convex, linear)      | linear        |
| Elevation 950'                      |                 | A                | spect       |                                   |               |
| Avg Annual Precipitation (in)       | 40"             | Р                | recipitat   | cion range (in): 35-55"           |               |
| Precip to date:                     | 19"             | %                | 6 of norm   | nal to date: 85%                  |               |
| Seasonal Climate notes:             | A cooler th     | ian normal spriv | ng has del  | ayed intial growth and will effec | tively reduce |
| the total production this year sou  | newhat.         |                  |             |                                   |               |
|                                     |                 |                  |             |                                   |               |
| Dominant forage species and         | estimated o     | compositior $O$  | rchardgra   | ass 2590, Timothy 890, Tall fesc  | cue 10%,      |
| Smooth brome 30%, Kentucky blu      | uegrass 590,    | Plantain 590, C  | urly dock   | 190, White clover 290, Red clover | · 290,        |
| Weedy spp. (mustard, sowthistle     | , bull thistle) | 10%              |             |                                   |               |
|                                     |                 |                  | _           |                                   |               |
|                                     |                 | Supportin        | ng data     |                                   |               |
| Representative climate statio       | n Burlington    |                  |             |                                   |               |
| Foliar Cover (% composition):       | 9870            | Ground Cov       | /er (%):    | 2570                              |               |
| Bunchgrasses:                       | 4370            | Bare Groun       | d (%):      | 270                               |               |
| Sod grasses:                        | 15%             | Litter:          |             | 20%                               |               |
| Forbs:                              | 40%             | Rock:            |             | D90                               |               |
| Shrubs:                             | D990            | Biotic Crust     | :           | D90                               |               |
| Trees:                              | 0%              | Basal plant o    | cover:      | 570                               |               |

57 TN 190 RP 4 (November 2024)

|          | DETERMINING INDIC                 | <b>ATO</b> | RS C     | )F P | AST  | URE HE                                                                 | ALTH EVALUATION SHEET Page 1 of 2                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
|----------|-----------------------------------|------------|----------|------|------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|          | Cooperator: Liber                 | ·ty Jo     | hnsov    | 1    |      | Conser                                                                 | vationist: Sammy Soil                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| E١       | valuation Area: ۲۵۵               | uth Fo     | orty     |      |      |                                                                        | Date: July 4 2026                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
|          | Dominant Soil: B                  | oothb      | ay       |      |      |                                                                        | Location: Franklinfield                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|          | Departure from Expected           |            | Со       | de   |      | Instructions for Evaluation Sheet:                                     |                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|          | None to Slight                    |            | N        | -S   |      | (1) Assign indicator ratings. If indicator is not present, rate N-S.   |                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|          | Slight to Moderate                |            | S-       | М    |      | (2) In the th                                                          | (2) In the three grids below, write the indicator number in the appropriate                                                                                                         |  |  |  |  |  |  |  |  |  |
|          | Moderate                          |            | Ν        | Л    |      | (3) Assign overall rating for each attribute based on preponderance of |                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|          | Moderate to Extreme               |            | M        | -E   |      | evidence.                                                              | <b>.</b>                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| <u> </u> | Extreme to I otal                 |            | <u> </u> | -    |      | (4) Justify e                                                          | each attribute rating in writing.                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| In       | dicators                          | 1          | Attri    | but  | e    | Rating                                                                 | Notes                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 1        | Erosion (Sheet and Rill)          | SSS        | HF       |      |      | S-M                                                                    | No evidence of past rills and guilles. Some rills in livestock trails<br>and vehicle trail.                                                                                         |  |  |  |  |  |  |  |  |  |
| 2        | Erosion (Gullies)                 | SSS        | HF       |      |      | S-M                                                                    | Old gullies near creek, drainageways vegetated with graminoids<br>and stable                                                                                                        |  |  |  |  |  |  |  |  |  |
| 3        | Erosion (Wind)                    | SSS        | HF       |      |      | N-S                                                                    | No wind erosion observed                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 4        | Erosion (Streambank) if present   | SSS        | HF       |      |      |                                                                        | No shorelines or streambanks associated with field                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| 5        | Water-flow patterns               | SSS        | HF       |      |      | S-M                                                                    | Water flow patterns stable and vegetated                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 6        | Bare Ground %                     | SSS        | HF       |      |      | N-S                                                                    | Bare ground <2%.                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 7        | Pedestals and Terracettes         | SSS        | HF       |      |      | N-S                                                                    | No pedestals observed in water flow channels                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 8        | Litter movement                   | SSS        | HF       |      |      | N-S                                                                    | No litter and mulch movement in water flow channels observed                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 9        | Effect on infiltration and runoff |            | HF       |      |      | S-M                                                                    | Trend appears to be moving toward increased K. bluegrass,<br>replacing bunchgrass, primarily orchardgrass. Sod forming<br>species are associated with decreased infiltration        |  |  |  |  |  |  |  |  |  |
| 10       | Soil Surface loss or degradation  | SSS        | HF       | BI   |      | S-M                                                                    | Some surface soil and organic matter loss associated with past<br>history of cultivation                                                                                            |  |  |  |  |  |  |  |  |  |
| 11       | Compaction Layer                  | SSS        | HF       | BI   |      | N-S                                                                    | Compaction observed, mostly along livestock trails, fencelines,<br>gate areas                                                                                                       |  |  |  |  |  |  |  |  |  |
| 12       | Plant Foliar Cover                | SSS        | HF       |      |      | N-S                                                                    | Plant foliar cover 98%, adequate for raindrops intercept & reducing overland flow                                                                                                   |  |  |  |  |  |  |  |  |  |
| 13       | Forage Plant Diversity            |            |          | BI   | LMQF | S-M                                                                    | Forage diversity declining from desirable bunchgrasses to more<br>sod forming K. bluegrass. Increases in plantain and scattered<br>thistles                                         |  |  |  |  |  |  |  |  |  |
| 14       | % Desirable Forage Plants         |            |          |      | lmqf | S-M                                                                    | A transition is in progress shifting from bunchgrass to<br>sodgrass. Weedy forbs such as mustards, sowthistle, prickly<br>lettuce common and increasing in stand ≈ 10% foliar cover |  |  |  |  |  |  |  |  |  |
| 15       | Invasive Plants                   |            |          | BI   | lmqf | S-M                                                                    | Undesirable weedy forbs (plantain, mustards, sowthistle, prickly<br>lettuce, bull thistle). Can be controlled by pest mgt.                                                          |  |  |  |  |  |  |  |  |  |
| 16       | Production                        |            |          | BI   | LMQF | S-M                                                                    | Potential annual production has decreased ( $\approx$ 30%) due to increasing composition of Kentucky bluegrass and weedy forbs                                                      |  |  |  |  |  |  |  |  |  |
| 17       | Plant Vigor w/ emphasis           |            |          | BI   |      | S-M                                                                    | Vigor and composition of orchardgrass has diminished, and K.<br>bluegrass gaining dominance in pasture                                                                              |  |  |  |  |  |  |  |  |  |
| 18       | Dead or Dying Plants/Parts        |            |          | BI   |      | N-S                                                                    | No evidence                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| 19       | Litter cover and Depth            |            | HF       | BI   |      | N-S                                                                    | Litter cover in bare ground areas, overall ground cover of litter is $\approx 5 ^{\rm cr}{\rm o}$                                                                                   |  |  |  |  |  |  |  |  |  |
| 20       | % legume                          |            |          | BI   | LMQF | M                                                                      | Legume composition <590. Legumes' diversity reduced; dominant<br>remaining legume is white clover. Area outside fence has higher<br>legume composition and red clover.              |  |  |  |  |  |  |  |  |  |
| 21       | Uniformity of Use                 |            | HF       | BI   | LMQ  | N-S                                                                    | Grazing distribution adequate                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| 22       | Grazing and Utilization           | SSS        | HF       | BI   | LMQ  | N-S                                                                    | Current pasture grazing levels are light                                                                                                                                            |  |  |  |  |  |  |  |  |  |

| Soil & Site Stability (12) |         |            |          |          |        |                            | Hydrologic Function (15) |                   |         |         |         |                                  |         | Biotic Integrity (11)         |         |                               |                            |                                  |                 | Livestock Management |         |        |       |  |  |
|----------------------------|---------|------------|----------|----------|--------|----------------------------|--------------------------|-------------------|---------|---------|---------|----------------------------------|---------|-------------------------------|---------|-------------------------------|----------------------------|----------------------------------|-----------------|----------------------|---------|--------|-------|--|--|
|                            | E-T     | M-E        | М        | S-M      | N-S    |                            | E-T                      | M-E               | М       | S-M     | N-S     |                                  | E-T     | M-E                           | М       | S-M                           | N-S                        |                                  | (               | Qualit               | y Fac   | tor (7 | ')    |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         |                                  |         |                               |         |                               |                            |                                  | E-T             | M-E                  | М       | S-M    | N-S   |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         |                                  |         |                               |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         |                                  |         |                               |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         |                                  |         |                               |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         | 22      |                                  |         |                               |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         | 21      |                                  |         |                               |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          |          | 22     |                            |                          |                   |         |         | 19      |                                  |         |                               |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          |          | 12     |                            |                          |                   |         |         | 12      |                                  |         |                               |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          |          | 11     |                            |                          |                   |         | 10      | 11      |                                  |         |                               |         | 17                            | 22                         |                                  |                 |                      |         |        |       |  |  |
|                            |         |            |          | 10       | 8      |                            |                          |                   |         | 9       | 8       |                                  |         |                               |         | 16                            | 21                         |                                  |                 |                      |         | 16     |       |  |  |
|                            |         |            |          | 5        | 7      |                            |                          |                   |         | 5       | 7       |                                  |         |                               |         | 15                            | 19                         |                                  |                 |                      |         | 15     |       |  |  |
|                            |         |            |          | 2        | 6      |                            |                          |                   |         | 2       | 6       |                                  |         |                               |         | 13                            | 18                         |                                  |                 |                      |         | 14     | 22    |  |  |
|                            |         |            |          | 1        | 3      |                            |                          |                   |         | 1       | 3       |                                  |         |                               | 20      | 10                            | 11                         |                                  |                 |                      | 20      | 13     | 21    |  |  |
|                            | Ove     | rall Ra    | ating:   | S-       | M      |                            | Ove                      | rall Ra           | ating:  | S-      | M       |                                  | Over    | rall Ra                       | ting:   | S-                            | M                          |                                  | Ove             | rall Ra              | ating:  | S-     | M     |  |  |
| Mixt                       | ure o   | N-Sa       | and S-   | M. ON    | /erall | Mixt                       | ure of                   | N-50              | and S-  | M. Ov   | erall   | Mixta                            | nre of  | N-S a                         | M wit   | n one                         | Salt placement by watering |                                  |                 |                      |         |        |       |  |  |
| rati                       | ng S-1  | M becc     | ause c   | of indic | ator   | rating S-M because of past |                          |                   |         |         |         |                                  | erate   | conce                         | o non-1 | toxic                         | area. Livestock trails to  |                                  |                 |                      |         |        |       |  |  |
| conce                      | erns i. | e., rilliv | ng in t  | trails,  | past   | erosi                      | on (ril                  | ling <i>, a</i> i | nd old  | gullies | s, soil | legu                             | Legui   | watering area and along fence |         |                               |                            |                                  |                 |                      |         |        |       |  |  |
| soil                       | loss a  | during     | cultiv   | ration   | and    | sи                         | rface                    | loss d            | uring   | farmi   | ng      | decr                             | y, espe | red cli                       | over.   | lines. Forage plant diversity |                            |                                  |                 |                      |         |        |       |  |  |
| hist                       | ory of  | farm       | ing. E   | ividena  | e of   | hista                      | ory, in                  | v. Plav           | its) S  | iome r  | illing  | Legumes' diversity reduced;      |         |                               |         |                               |                            | could be improved by controlling |                 |                      |         |        |       |  |  |
| Ŧ                          | pasti   | rills an   | ıd gulli | ies bu   | +      | in                         | livest                   | ock tr            | ails a  | nd alo  | ng      | dominant legume is white clover. |         |                               |         |                               |                            | и                                | ndesir          | able v               | veedy   | plant  | s.    |  |  |
|                            | vege-   | tated      | at pr    | esent    |        |                            | Ŷ                        | vehicle           | e trail |         |         | Some Bull thistles scattered     |         |                               |         |                               |                            | Bunc                             | hgra            | sses a               | ire dei | creasi | ng in |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         | throughout, weedy spp. plantain, |         |                               |         |                               |                            | st                               | and,            | Kentu                | cky bli | negra  | SS    |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         | SON                              | ) this- | tle, mi                       | istard  | ls, prid                      | ckly                       | i,                               | ncrea:          | sing in              | stan    | d. SOV | Ν     |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         | let-                             | tuce. ( | Grass                         | comp    | . shift                       | ing                        | SOM                              | ewha            | t depl               | eted (  | from F | ast   |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         |                                  | from    | bunch                         | grass   | ses to                        |                            | cri                              | oppina          | g hista              | ory an  | d wat  | er    |  |  |
|                            |         |            |          |          |        |                            |                          |                   |         |         |         | sodgrasses.                      |         |                               |         |                               |                            |                                  | erosion events. |                      |         |        |       |  |  |

#### Table 32 DIPH Evaluation Sheet for Case Study I Cool Season Plant Species, 2 of 2

#### Summary

DIPH on this pasture showed that for the three attributes (soil and surface stability, hydrologic function, and biotic integrity), departure from expected reference conditions was none-to-slight to slight-to-moderate. Reconnaissance of the pasture clearly shows that foliar cover is high with a mixture of grasses and forb species. Litter was estimated at 20%, which provides further protection from raindrop impact and ameliorating the effect of runoff.

Total foliar cover on site is 98% and ground cover is 25%, with 2% bare ground (no foliar, no ground). Foliar cover of bunch grasses = 43%, sod forming grasses=15%, forbs=40%, and litter=20%.





Photo 41 Southern states warm season pasture for case study II. Photo credit: Ken Spaeth, NRCS.

## **General Setting Description**

The setting for this case study depicted in Photo 35. Table 9 contains details gathered about the site during a field visit for conservation planning purposes, including a brief inventory plant species composition based on ocular estimation. Producer recently purchased farm and wants to instigate a new management regime based on managed grazing specifications.

#### Soils

The Providence series consists of moderately well drained soils with a fragipan. Permeability is moderately slow. These soils formed in a mantle of silty materials, about 2 feet thick, and the underlying sandy and loamy sediments. They are nearly level to moderately steep soils in uplands and on-stream terraces of the Southern Coastal Plain (133A) and the Southern Mississippi Valley Loess (MLRA 134) Major Land Resource Areas. Slopes range from 0 to 15 percent.

 Table 35 Determining Indicators of Pasture Health Evaluation Sheet for Case Study II Warm Season Plant Species

| Evaluation Sheet ID (Landowner, Far         | m, ranch, etc.):    | Owen lars                                               |
|---------------------------------------------|---------------------|---------------------------------------------------------|
| Management Unit: Big Pasture                |                     |                                                         |
| Observer(s): Sammy Soil                     |                     | Date: 4-Jul-26                                          |
|                                             | Loca                | ation                                                   |
| Ecological Site ID and Code: F134           | XY1D5MS Souther     | rn Rolling Plains Loess Fragipan Upland                 |
| Pasture State Narrative (Y/N): Yes no       | arrative for Comm   | munity 3.1 Pasture                                      |
| Soil Survey: Carroll County, MS             | 5 Map Unit          | : PrD3 Component: Providence                            |
| Surface Soil texture: Sil+ loam             |                     |                                                         |
| Position by GPS? Y/N: Yes                   |                     | Photos Taken? Y/N: Yes                                  |
| GPS Location: Lat: 106.5                    | 4332                | Long: 40.43356                                          |
| Location Description: Down                  | from the shed in    | the big field where the trees are                       |
| Office: Carrollton                          |                     | Pasture Size (ac): 35                                   |
| Size (ac) represented by DIPH sample        | e: 35               | No. samples needed: 1                                   |
| Criteria used to select evaluation are      | a: Central loca     | ation of the pasture, representative of the majority of |
| acres in slope, aspect, grazing use, distan | ce to water and s   | shade                                                   |
|                                             |                     |                                                         |
|                                             | His                 | story                                                   |
| Land treatments or conservation pra         | ctices applied:     | None                                                    |
| Resource Concerns: Invasive species,        | erosion             |                                                         |
| Residual (stubble) ht 2"                    | Utilization %:      | Haying history: None                                    |
| Historic Grazing Intensity (low, med, high  | n): high            | Current Grazing Intensity (low, med, high): high        |
| Grazing system: Continuous                  |                     |                                                         |
| Land use history: Homesteaded in 19         | 380's, grazed no    | w for decades                                           |
| Offiste influences on land: None            |                     |                                                         |
| Natural Disturbances and time since (list   | ): none             |                                                         |
| E                                           | valuation Area      | a description data                                      |
| Slope 5%                                    |                     | Slope shape (concave, convex, linear) convex            |
| Elevation 400'                              |                     | Aspect                                                  |
| Avg Annual Precipitation (in) 54"           |                     | Precipitation range (in): 50-60"                        |
| Precip to date: 22"                         |                     | % of normal to date: 100%                               |
| Seasonal Climate notes: Recov               | ering from a mild   | drought, this year was the 21st wettest year to date    |
| over the past 130 years                     |                     |                                                         |
|                                             |                     |                                                         |
| Dominant forage species and estimated o     | composition:        | Bermuda grass 40%, Bahia grass 15%,                     |
| Dallis grass 270, Foxtail 270, Annual rye 5 | 5970, Tall fescue 2 | 290, Curly dock 290, Henbit 290, Musk thistle 290,      |
| Buckhorn Plantain 290, Multiflora rose 19   | o, Blackberry 290   | 'o, Eastern red cedar 590,                              |
|                                             |                     |                                                         |
|                                             | Support             | ting data                                               |
| Representative climate station Burlin       | gton                |                                                         |
| Foliar Cover (% composition): 82%           | Ground C            | <b>Cover (%):</b> 25%                                   |
| Bunchgrasses: ୧୩୦                           | Bare Grou           | und (%): 18%                                            |
| Sod grasses: 57%                            | Litter:             | 20%                                                     |
| Forbs: උෆං                                  | Rock:               | 070                                                     |
| Shrubs & Trees: 870                         | Biotic Cru          | ust: 070                                                |
|                                             | Basal plar          | nt cover: 5%                                            |

62 TN 190 RP 4 (November 2024)

|                           | Cooperator: Ow                                                                              | ien Li                 | ars       |      |          | Conservationist: Sammy Soil                                                                                                                                        |                                                                                                                                                                                                                    |                                                                                                        |  |  |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------|------------------------|-----------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Ev                        | aluation Area: Big                                                                          | Past                   | rure      |      |          |                                                                                                                                                                    | Date:                                                                                                                                                                                                              | 7/4/2026                                                                                               |  |  |  |  |  |  |
| [                         | Dominant Soil: Pro                                                                          | ovidei                 | nce       |      |          | Location: Carrollton                                                                                                                                               |                                                                                                                                                                                                                    |                                                                                                        |  |  |  |  |  |  |
|                           | <b>Departure from Expected</b>                                                              |                        | Co        | de   |          | Instructions for Evaluation Sheet:                                                                                                                                 |                                                                                                                                                                                                                    |                                                                                                        |  |  |  |  |  |  |
|                           | None to Slight<br>Slight to Moderate<br>Moderate<br>Moderate to Extreme<br>Extreme to Total | N-S<br>S-M<br>M<br>M-E |           |      |          | <ol> <li>Assign in</li> <li>In the th</li> <li>In the th</li> <li>Column for a</li> <li>Assign a</li> <li>Assign a</li> <li>Assign a</li> <li>Justify a</li> </ol> | ags. If indicator is not present, rate N-S.<br>ow, write the indicator number in the appropriate<br>r that is applicable to the attribute.<br>for each attribute based on preponderance of<br>e rating in writing. |                                                                                                        |  |  |  |  |  |  |
| In                        | dicators                                                                                    |                        | <br>Attri | bute | <u>-</u> | Rating                                                                                                                                                             | Notes                                                                                                                                                                                                              |                                                                                                        |  |  |  |  |  |  |
|                           |                                                                                             |                        |           | but  | <u> </u> | Rating                                                                                                                                                             | Current rills                                                                                                                                                                                                      | s and gullies active. Rills forming from livestock trails                                              |  |  |  |  |  |  |
| 1                         | Erosion (Sheet and Rill)                                                                    | 555                    | HF        |      |          | M                                                                                                                                                                  | and along vi                                                                                                                                                                                                       | ehicle trail.                                                                                          |  |  |  |  |  |  |
| 2                         | Erosion (Gullies)                                                                           | SSS                    | HF        |      |          | м                                                                                                                                                                  | Gullies near                                                                                                                                                                                                       | creek, excessive upland runoff. Gullies expanding                                                      |  |  |  |  |  |  |
| 3                         | Erosion (Wind)                                                                              | SSS                    | HF        |      |          | N-S                                                                                                                                                                | No wind ero                                                                                                                                                                                                        | sion observed                                                                                          |  |  |  |  |  |  |
| 4                         | Erosion (Streambank) if<br>present                                                          | SSS                    | HF        |      |          | м                                                                                                                                                                  | Active sloug<br>moderately                                                                                                                                                                                         | ghing and downcutting. Hydrology of riparian system<br>altered.                                        |  |  |  |  |  |  |
| 5                         | Water-flow patterns                                                                         | SSS                    | HF        |      |          | М                                                                                                                                                                  | Lengths an<br>to moderat                                                                                                                                                                                           | d/or widths moderately higher than expected. Minor<br>e erosional and depositional areas. Infrequently |  |  |  |  |  |  |
| 6                         | Bare Ground %                                                                               | SSS                    | HF        |      |          | М                                                                                                                                                                  | Bare groun                                                                                                                                                                                                         | d 18% and excessive                                                                                    |  |  |  |  |  |  |
| 7                         | Pedestals and Terracettes                                                                   | SSS                    | HF        |      |          | M                                                                                                                                                                  | Plant pedes<br>forming on s                                                                                                                                                                                        | tals observed in water flow channels. Terracettes<br>side slopes form livestock trailing.              |  |  |  |  |  |  |
| 8                         | Litter movement                                                                             | SSS                    | HF        |      |          | М                                                                                                                                                                  | Litter and mulch movement in water flow channels observed                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| 9                         | Effect on infiltration and runoff                                                           |                        | HF        |      |          | М                                                                                                                                                                  | Trend appears to be moving toward increased undesirable we grasses and forbs. See foliar cover estimate table.                                                                                                     |                                                                                                        |  |  |  |  |  |  |
| 10                        | Soil Surface loss or degradation                                                            | SSS                    | HF        | BI   |          | М                                                                                                                                                                  | Surface soil                                                                                                                                                                                                       | loss visible on side slopes.                                                                           |  |  |  |  |  |  |
| 11                        | Compaction Layer                                                                            | SSS                    | HF        | BI   |          | м                                                                                                                                                                  | Compaction<br>Watering an                                                                                                                                                                                          | observed, predominant along livestock trails,<br>reas, fencelines, gate areas                          |  |  |  |  |  |  |
| 12                        | Plant Foliar Cover                                                                          | SSS                    | HF        |      |          | м                                                                                                                                                                  | Plant foliar<br>adequate fo                                                                                                                                                                                        | cover about 82.90. Plant height and cover is not<br>or interception of raindrops and reducing overland |  |  |  |  |  |  |
| 13                        | Forage Plant Diversity                                                                      |                        |           | BI   | LMQF     | м                                                                                                                                                                  | Forage dive<br>grass appe                                                                                                                                                                                          | rsity is declining from desirable species. Bermuda<br>ars stressed from overgrazing. Weedy forbs       |  |  |  |  |  |  |
| 14                        | % Desirable Forage Plants                                                                   |                        |           |      | LMQF     | м                                                                                                                                                                  | A transition<br>season gras                                                                                                                                                                                        | n is in progress and shifting from desirable warm<br>ses (Bermuda and Bahia grass) to weedy grasses    |  |  |  |  |  |  |
| 15                        | Invasive Plants                                                                             |                        |           | BI   | LMQF     | М                                                                                                                                                                  | Undesirable                                                                                                                                                                                                        | weedy forbs, shrubs, and tree species ( $\approx$ 16%).                                                |  |  |  |  |  |  |
| 16                        | Annual Production                                                                           |                        |           | BI   | LMQF     | M-E                                                                                                                                                                | Potential an increasing a                                                                                                                                                                                          | nnual production has decreased ( $\approx$ 50%) due to omposition of weedy grasses and forbs.          |  |  |  |  |  |  |
| 17                        | Plant Vigor w/ emphasis                                                                     |                        |           | BI   |          | M-E                                                                                                                                                                | Vigor and co                                                                                                                                                                                                       | omposition of bermudagrass severely diminished.                                                        |  |  |  |  |  |  |
| 18                        | Dead or Dying Plants/Parts                                                                  |                        |           | BI   |          | М                                                                                                                                                                  | Moderate n<br>Plants                                                                                                                                                                                               | nortality and/or dying plants/plant parts of desirable                                                 |  |  |  |  |  |  |
| 19 Litter cover and Depth |                                                                                             |                        | HF        | BI   |          | M-E                                                                                                                                                                | Accumulatic<br>extremely o                                                                                                                                                                                         | on of litter cover and depth, and decomposition mod-to-<br>ut of balance with phenology status         |  |  |  |  |  |  |
| 20                        | % non-toxic legume                                                                          |                        |           | BI   | LMQF     |                                                                                                                                                                    | Southern Pa                                                                                                                                                                                                        | asture climates not conducive to sustaining legumes                                                    |  |  |  |  |  |  |
| 21                        | Uniformity of Use                                                                           |                        | HF        | BI   | LMQF     | М                                                                                                                                                                  | Little-graz<br>26 to 50%                                                                                                                                                                                           | ed patches where forage species are rejected cover<br>of the area. Patches are occasionally connected. |  |  |  |  |  |  |
| 22                        | Grazing and Utilization                                                                     | SSS                    | HF        | BI   | LMQF     | M-E                                                                                                                                                                | Utilization                                                                                                                                                                                                        | neavy ≈ 75%                                                                                            |  |  |  |  |  |  |

#### Table 41 DIPH Evaluation Sheet for Case Study II Warm Season Plant Species, 2 of 2

|       | Soil     | & Site    | e Stał   | oility              | (12) |       | Hyd     | rologi   | c Fun   | ction  | (15)   |                              | Bi     | otic lı | ntegr  | ity (1 | 1)    |                             | Live                              | estock | Man   | agem   | ent |  |  |
|-------|----------|-----------|----------|---------------------|------|-------|---------|----------|---------|--------|--------|------------------------------|--------|---------|--------|--------|-------|-----------------------------|-----------------------------------|--------|-------|--------|-----|--|--|
|       | E-T      | M-E       | Σ        | S-M                 | N-S  |       | E-T     | M-E      | Μ       | S-M    | N-S    |                              | E-T    | M-E     | М      | S-M    | N-S   |                             | (                                 | Qualit | y Fac | tor (7 | )   |  |  |
|       |          |           |          |                     |      |       |         |          |         |        |        |                              |        |         |        |        |       |                             | E-T                               | M-E    | Μ     | S-M    | N-S |  |  |
|       |          |           |          |                     |      |       |         |          | 21      |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           |          |                     |      |       |         |          | 12      |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           | 12       |                     |      |       |         |          | 11      |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           | 11       |                     |      |       |         |          | 10      |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           | 10       |                     |      |       |         |          | 9       |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           | 8        |                     |      |       |         |          | 8       |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           | 7        |                     |      |       |         |          | 7       |        |        |                              |        |         | 21     |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           | 6        |                     |      |       |         |          | 6       |        |        |                              |        |         | 18     |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           | 5        |                     |      |       |         |          | 5       |        |        |                              |        | 22      | 15     |        |       |                             |                                   |        | 21    |        |     |  |  |
|       |          |           | 4        |                     |      |       |         |          | 4       |        |        |                              |        | 19      | 13     |        |       |                             |                                   |        | 15    |        |     |  |  |
|       |          |           | 2        |                     |      |       |         | 22       | 2       |        |        |                              |        | 17      | 11     |        |       |                             |                                   | 22     | 14    |        |     |  |  |
|       |          | 22        | 1        |                     | 3    |       |         | 19       | 1       |        | 3      |                              |        | 16      | 10     |        |       |                             |                                   | 16     | 13    |        |     |  |  |
|       | Over     | all Ra    | ating:   | V                   | N    |       | Over    | rall Ra  | ating:  | V      | N      |                              | all Ra | M       | -E     |        | Ove   | rall Ra                     | ating:                            | S-     | M     |        |     |  |  |
| Pred  | omina    | ntly W    | 1 ratiu  | 19. Ac <sup>.</sup> | tive | Predu | ominai  | ntly M   | ratin   | g wit  | h2     | Mixtu                        | are of | M to    | M-E, ' | Signif | cant  | M to M-E. Major grazing     |                                   |        |       |        |     |  |  |
| erosi | on is a  | appar<br> | ent bi   | ased c              | м    | M-E.  | Hydro   | ologic f | -unctio | on is  |        | management changes are       |        |         |        |        |       | management changes are      |                                   |        |       |        |     |  |  |
| shee  | t and    | rill, gi  | nlly, ai | 10<br>DU-1          |      | IMPA  | irea, v | vater    | balan   | ce     |        | needed immediately to offset |        |         |        |        |       |                             | needed to maintain site stability |        |       |        |     |  |  |
| stre  | ambai    | nk. Coi   | nauct    | KHEV                | N    | chan  | ges ar  | re sigi  | nticav  | it as  |        | Increa                       | ase in | INVAS   | ive pl | ant    |       | and productivity. Livestock |                                   |        |       |        |     |  |  |
| node  | il to er | valua-    | te cur   | rent                |      | runof | fis er  | cessi    | ve, an  | d      |        | species. Brush management is |        |         |        |        |       |                             | performance will ultimately       |        |       |        |     |  |  |
| runo  | ff and   | erosi     | on and   | l risk ·            | from | evap  | oratic  | on of u  | ater    | is mu  | ch     | needed as blackberry and     |        |         |        |        |       |                             | decline.                          |        |       |        |     |  |  |
| desig | yn sto   | rm e√     | ents.    |                     |      | highe | er tha  | in refe  | rence   | condi  | tions. | easte                        | d ceda |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           |          |                     |      | Condi | nct Rf  | HEM N    | nodel – | to     |        | encro                        | achina | g. Prin | nary f | Forage |       |                             |                                   |        |       |        |     |  |  |
|       |          |           |          |                     |      | evalı | iate c  | urrent   | runo    | ff ano |        | speci                        | es sha | ows si  | gnific | ant s- | tress |                             |                                   |        |       |        |     |  |  |
|       |          |           |          |                     |      | erosi | on and  | l risk t | from a  | lesign |        | and o                        | vergr  | azing.  |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           |          |                     |      | storv | n evei  | nts.     |         |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           |          |                     |      |       |         |          |         |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |
|       |          |           |          |                     |      |       |         |          |         |        |        |                              |        |         |        |        |       |                             |                                   |        |       |        |     |  |  |

Overall, the pasture has major problems with respect to SSS, HF, BI, and LMQF. Informed producer that some thresholds have been crossed for SSS, HF, and BI and complete restoration to near reference conditions is not possible. Significant changes in management can help stabilize these three DIPH assessments with managed grazing, weed and pest management applications.

Table 10 and Table 11 are examples of completed field evaluation and determination of preponderance of evidence for the three assessments.

#### Summary

#### (1) Soil and Site Stability

Some of the key erosion indicators such as sheet and rill, gully, and streambank erosion were rated at moderate departure. Rills moderate in number at infrequent intervals. Moderate rill width, depth, and length. Occur mostly in exposed areas, and steeper slopes. Bare ground is 18%, which is significantly higher compared to a reference condition of Bermuda grass composition in this climate regime. Significant soil loss has and is occurring on this field. Active gullies near creek drainage areas due to excessive runoff on upland slopes. Plant pedestals and terracettes common throughout pasture. Areas of this pasture have exceeded stable ecological thresholds. Soil loss has and is excessive, and a decreasing trend and transition to other less desirable pasture states will continue without significant changes in managed grazing.

64 TN 190 RP 4 (November 2024)

#### (2) Hydrologic Function

Same indicators as above: Some of the key erosion indicators such as sheet and rill, gully, and streambank erosion are active. Rills moderate in number at infrequent intervals. Moderate rill width, depth, and length. Occur mostly in exposed areas, and steeper slopes. Water flow paths are numerous and exacerbated compared to reference conditions. Plant pedestals and terracettes common throughout pasture. Hydrologic capacity is significantly reduced due to high runoff and erosion on pasture. Available effective water is significantly reduced and is reflected by lower forage production. Compaction due to heavy grazing.

Weedy species or invasive plants are increasing in stand, which are competitive with desirable forage grasses (Bermuda grass, Bahia grass). Invasive shrub/trees are increasing in pasture (Eastern red cedar, blackberry). Brush management and pest management of undesirable weedy and invasive species is needed, as the trend of these species is increasing.

#### (3) Biotic Integrity

Mixture of M to M-E. Significant management changes are needed immediately to offset increase in invasive plant species. Brush management is needed as blackberry and eastern red cedar are encroaching. Primary forage species shows significant stress and overgrazing.

Weedy invasive species increasing in stand and affecting overall potential production. Due to invasive weedy species, forage production diversity, % desirable plants, and plant vigor are M to M-E departure.

Annual forage production has been compromised and has decreased from average potential ( $\approx$  50%) due to overgrazing, erosion, changes in water balance, and invasion of weedy plant species.

DIPH on this pasture showed that for the three attributes (soil and surface stability, hydrologic function, and biotic integrity), departure from expected reference conditions was moderate to moderate-to-extreme. Reconnaissance of the pasture clearly indicates that accelerated and greater amounts of runoff are active, which has resulted in gullies in the drainage channel. From visual inspection, sheet and rill erosion is active. Water flow paths are numerous, and some are scoured with little vegetation and bare ground exposed.

#### (4) Livestock Management Quality Factor

Heavy grazing intensity with continuous use has resulted in patchy use patterns, decreased production, decline in desirable forage species, and encroachment by invasive plants. Management changes are necessary to reverse the trends toward these degraded conditions.

# **Works Cited**

Aase, J. K. & Wight, J. R., 1973. Prairie sandreed (Calamilvilfa longifolia): water infiltration and use. *Journal of Range Management*, Volume 26, pp. 212-214.

Anderson, W. E., 1974. Indicators of soil movement on range watersheds. *Rangeland Ecology & Management/Journal of Range Management Archives*, 27(3), pp. 244-245.

Anon., n.d.

Bailey, D. W., 2004. Management strategies for optimal grazing distribution and use of arid rangelands. *Journal of Animal Science*, Volume 82, pp. 147-153.

Barnes, R. F., Nelson, C. J., Collins, M. & Moore, K. J., 2003. *Forages: An introduction to grassland agriculture (Vol 1).* Ames, Iowa: Iowa State University Press.

Bestelmeyer, B. et al., 2017. State and transition models: theory, applications, and challenges. In: *Rangeland systems: Processes, management and challenges.* s.l.:s.n., pp. 303-345.

Blackburn , W. H., 1975. Factors influencing infiltration and sediment production of semi-arid rangelands in Nevada. *Water Resources Research*, Volume 11, pp. 929-937.

Blackburn, W. H., 1984. Impacts of grazing intensity and specialized grazing systems on watershed characteristics and responses. In: N. R. C. A. o. Sciences, ed. *Developing strategies for rangeland management*. Boulder, CO: Westview Press, pp. 927-983.

Blackburn, W. H. et al., 1992. The spatial and temporal influence of vegetation on surface soil factors in semiarid rangelands. *Transactions of the ASAE*, Volume 35, pp. 479-486.

Blackburn, W. H., Pierson, F. B. & Seyfried, M. S., 1990. Spatial and temporal influence of soil frost on infiltration and erosion of sagebrush rangelands. *Water Resources Bulletin*, Volume 26, pp. 991-997.

Blackburn, W. H. & Skau, C. M., 1974. Infiltration rates and sediment production of selected plant communities in Nevada. *Rangeland Ecology & Management/Journal of Range Management Archives*, 27(6), pp. 476-480.

Blackburn, W. H., Thurow, T. L. & Taylor, C. A., 1986. *Soil erosion on rangeland*. Denver, CO, Symposium; Society for Range Management, pp. 31-39.

Briske, D., Fuhlendorf, S. & Smeins, F., 2005. State-and-transition models, thresholds, and rangeland health: a synthesis of ecological concepts and perspectives. *Rangeland Ecology and Management*, Volume 58, pp. 1-10.

Brown, J. R. & Herrick, J. E., 2016. Making soil health a part of rangeland management. Issue 71.

Cadaret, E. M., McGuire, K. C. & Nouwakpo, S. K., 2016. Vegetation canopy cover effects on sediment erosion processes in the Upper Colorado River Basin Mancos Shale Formation, Price, Utah. *Catena*, Volume 147, pp. 334-344.

Canadian Agronomist, 2021. *Pasture rejuvenation with bloat-free legumes*. [Online] Available at: <u>https://canadianagronomist.ca/pasture-rejuvenation-with-bloat-free-legumes/</u> [Accessed 16 2 2024].

Chanasyk, D. S. & Naeth, M. A., 1995. Grazing impacts on bulk density and soil strength in the foothills fescue grasslands of Alberta, Canada. *Canadian Journal of Soil Science*, 75(4).

Cole, D. N., 1986. Resource impacts caused by recreation. In: *A Literature Review: The President's Commission on Americans Outdoors*. Washington, D.C. : The President's Commission on Americans Outdoors, pp. 1-11.

Cosgrove, D., Undersander, D. & Cropper, J., 2001. *Pasture condition score sheet,* Fort Worth, TX: Grazinglands Technology Institute.

Dee, R. F., Box, T. W. & Robertson Jr., E., 1966. Influence of grass vegetation on water intake of Pullman silty clay loam. *Journal of Range Management*, Volume 19, pp. 77-79.

Forage and Grazing Terminology Committee, 1991. *Terminology for Grazing Lands and Grazing Animals,* Blacksburg, VA: Pocahontas Press.

Forsythe, T. K., 2018. *Legumes are best.* [Online] Available at: <u>https://www.canadiancattlemen.ca/crops/the-challenge-of-maintaining-legume-percentage-in-cattle-forages/</u> [Accessed 16 2 2024].

Gelley, C., 2018. *Should I add more legumes to my pasture.*. [Online] Available at: <u>https://u.osu.edu/sheep/2018/01/16/should-i-add-more-legumes-to-my-pasture/</u> [Accessed 16 2 2024].

Gifford, C., 1985. Cover allocation in rangeland watershed management: a review. New York, s.n., pp. 23-31.

Gifford, G. F., 2021. Vegetation allocation for meeting site requirements. In: *Developing strategies for rangeland management*. s.l.:CRC Press, pp. 35-116.

Green, S. & Brazee, B., 2012. *Harvest Efficiency in Prescribed Grazing*. Boise, ID: USDA NRCS Plant Materials Program Utah & Idaho.

Hanson, C. L. & Lewis, J. K., 1978. *Winter runoff and soil water storage as affected by range condition.* Denver, CO, Proceedings of the first international rangeland congress, pp. 284-287.

Hassink, J., Bouwman, L. A., Zwart, K. B. & Brussard, L., 1993. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. *Soil Structure/Soil Biota Interrelationships*, pp. 105-128.

Hernandez, M. et al., 2017. The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands. *Water Resources Research*, Volume 53, p. 9368–9381.

Hernandez, M. et al., 2013. Application of a rangeland soil erosion model using National Resources Inventory data in southeastern Arizona. *Journal of Soil and Water Conservation 68*, Volume 68, pp. 512-525.

Herrick, J. et al., 2005. *Monitoring manual for grassland, shrubland and savanna ecosystems. Volume I: Quick Start. Volume II: Design, supplementary methods and interpretation.*. Las Cruces, NM: USDA-ARS Jornada Experimental Range.

Hillel, D., 2003. Introduction to environmental soil physics. s.l.:Elsevier.

Holechek, J. L., Pieper, R. D. & Herbel, C. H., 1989. *Range management. Principles and practices.* s.l.:Prentice-Hall.

Holechek, J. L., Pieper, R. D. & Herbel, C. H., 2010. *Range management principles and practices*. New York, New York: Pearson Publishing.

67 TN 190 RP 4 (November 2024)

Johnson, C. W. & Gordon, N. E., 1988. Runoff and erosion from rainfall simulator plots on. *Transactions of the American Society of Agricultural Engineers*, Volume 31, pp. 421-427.

Karl, J. & Herrick, J., 2010. Monitoring and assessment based on ecological sites. *Rangelands*, Volume 32, pp. 60-64.

Launchbaugh, K., 2001. *Anti-Quality Factors in Rangeland and Pastureland Foragee, Bulletin #73,* Moscow, Idaho: Idaho Forest, Wildlife and Range Experiment Station, University of Idaho.

Lepak, N. et al., 2024. *Describing Indicators of Rangeland Health, Technical Reference 1734-9.* s.l.:USDI Bureau of Land Management.

Martin, S. C. & Morton, H. L., 1993. Mesquite control increases grass density and reduces soil loss in southern Arizona. *Rangeland Ecology & Management/Journal of Range Management Archives*, 46(2), pp. 170-175.

Mazarak, A. P. & Conrad, E. C., 1959. Rates of water entry in three great soil groups after seven years in grasses and small grains. *Agronomy Journal*, Volume 51, pp. 264-267.

Montana State University, 2003. *Species and cultivars, seeding techniques and grazing management. EB19,* s.l.: Montana State University.

Nearing, M. et al., 2011. A rangeland hydrology and erosion model. *Transactions of the ASABE*, Volume 54, pp. 901-908.

Nelson, C. J., 2012. *Conservation Outcomes from Pastureland and Hayland Practices: Assessment, Recommendations, and Knowledge Gaps,* Lawrence, Kansas: Allen Press.

Osborn, B., 1950. Some Effects of the 1946-48 Drought on Ranges in Southwest Texas. *Rangeland Ecology & Management/Journal of Range Management Archives*, 3(1), pp. 1-15.

Pearse, C. K. & Wooley, S. B., 1936. The influence of range plant cover on the rate of absorption of surface water by soils. *Journal of Forestry*, Volume 34, pp. 844-847.

Pellant, M., Pyke, D., Shaver, P. & Herrick, J., 2005. *Interpreting indicators of rangeland health. Technical Reference 1734-6.* Version 4 ed. Denver, Colorado: U.S. Department of the Interior, Bureau of Land Management, National Operations Center.

Pellant, M. et al., 2020. *Interpreting Indicators of Rangeland Health. Tech Ref 1734-6.* Version 5 ed. Denver, CO: U.S. Department of the Interior, Bureau of Land Management, Denver Operations Center.

Phelan, P. et al., 2015. Forage legumes for grazing and conserving in ruminant production systems. *Critical Reviews in Plant Sciences*, Volume 34, pp. 281-326.

Pierson, F. B., Spaeth, K. E., Weltz, M. A. & Carlson, D. H., 2002. Hydrologic response of diverse western rangelands. *Journal of Range Management*, Volume 55, pp. 558-570.

Pierson, F. B., Williams, C. J., Hardegree, S. P. & Weltz, M. A., 2011. Fire, plant invasions, and erosion events on western rangelands. *Rangeland Ecology and Management*, Volume 64, pp. 439-449.

Pierson, F. & Williams, C., 2016. *Ecohydrologic impacts of rangeland fire on runoff and erosion: A literature synthesis. RMRS-GTR-351,* Denver, CO: USDA Forest Service, Rocky Mountain Research Station.

Pyke, D. A., 1995. Population diversity with special reference to rangeland plants. In: N. E. West, ed. *Biodiversity* of *Rangelands*. Logan, Utah: Utah State University, pp. 21-32.

Rauzi, F., Fly, C. L. & Dyksterhuis, E. J., 1968. *Water intake on midcontinental rangelands as influenced by soil and plant cover; Technical Bulletin 1390.* s.l.:USDA Soil Conservation Service.

Sanderson, M. A. et al., 2007. Plant species diversity, ecosystem function, and pasture management—A perspective. *Canadian Journal Plant Science*, Volume 87, pp. 479-487.

Sanderson, M. A. et al., 2004. Plant species diversity and management of temperate forage and grazing land ecosystems. *Crop Science*, Volume 44, pp. 1132-1144.

Selby, M. J., 1993. *Hillslope Materials and Processes*. s.l.:Oxford University Press.

Snyman, H. A. & Van Rensburg, W. L. J., 1986. Effect of slope and plant cover on run-off, soil loss and water use efficiency of natural veld. *Journal of the Grassland Society of Southern Africa*, 3(4), pp. 153-158.

Spaeth, K. E., 2022. Subpart B – Ecological sites, ecological site descriptions: ecological classification as a concept and use in conservation planning and monitoring. In: *National Range and Pasture Handbook*. Washington, D.C.: United States Department of Agriculture, Natural Resources Conservation Service.

Spaeth, K. E., Pierson, F. B., Weltz, M. A. & Awang, J. B., 1996. Gradient analysis of infiltration and environmental variables as related to rangeland vegetation. *Transactions of the American Society of Agricultural Engineers,* Volume 39, pp. 67-77.

Spaeth, K. E., Pierson, F. B., Weltz, M. A. & Hendricks, G. eds., 1996. *Grazingland hydrology issues: perspectives for the 21st century.* Denver, CO: Society for Range Management.

Spaeth, K., Weltz, M., Williams, J. & Pierson, F., 2022. Subpart G – Rangeland ecohydrology. In: *National Range and Pasture Handbook Revision 2.*. Washington, D.C.: United States Department of Agriculture, Natural Resources Conservation Service.

SRM, 1999. A glossary of term used in range management., Denver, Colorado: Society for Range management.

SRM, 1999. A glossary of terms used in range management, Denver, CO: Society for Range Management.

Svejcar, T., James, J., Hardegree, S. & Sheley, R., 2014. Incorporating plant mortality and recruitment into rangeland management and assessment. *Rangeland Ecology and Management*, Volume 607, pp. 603-613.

Swanson, S. R. & Buckhouse, J. C., 1984. Soil and nitrogen loss from Oregon lands occupied by three subspecies of big sagebrush. *Rangeland Ecology & Management/Journal of Range Management Archives*, 37(4), pp. 298-302.

Thurow, T., 1991. Hydrology and erosion. In: R. Heitschmidt & J. Stuth, eds. *Grazing management: an ecological perspective.* Portland, OR: Timber Press, pp. 141-159.

Thurow, T. L., Blackburn, W. H. & Taylor, C. A., 1988. Infiltration and interrill erosion responses to selected livestock grazing strategies, Edwards Plateau, Texas. *Rangeland Ecology & Management/Journal of Range Management Archives*, 41(4), pp. 296-302.

Thurow, T. L., Blackburn, W. H. & Taylor, C. A., 1986. Hydrologic characteristics of vegetation types as affected by livestock grazing systems, Edwards Plateau, Texas. *Rangeland Ecology & Management/Journal of Range Management Archives*, 39(6), pp. 505-509.

Toledo, D. et al., 2016. An integrated grazingland assessment approach for range and pasturelands. *Journal of Soil and Water Conservation*, 71(6), pp. 450-459.

Toledo, D. et al., 2016. An integrated grazingland assessment approach for range and pasturelands.. *Journal of Soil and Water Conservation*, p. 71: 450–459.

USDA Natural Resources Conservation Service, 2018. *NRI Pastureland Resource Assessment*, Washington, D.C.: USDA NRCS.

USDA NRCS, 1997. *National Range and Pasture Handbook*. Washington, D.C.: United States Department of Agriculture, Natural Resources Conservation Service.

USDA NRCS, 2001. Pasture condition scoresheet, Fort Worth, TX: NRCS Grazingland Technology Institute.

USDA NRCS, 2009. Stream Visual Assessment Protocol v2. In: *National Biology handbook*. Washington DC: USDA Natural Resources Conservation Service, p. Part 614.

USDA NRCS, 2011. *Soil Quality Physical Indicator Information Sheet Series - Particulate Organic Matter*. [Online] Available at: <u>https://www.nrcs.usda.gov/sites/default/files/2022-10/Particulate\_organic\_matter.pdf</u> [Accessed 12 March 2024].

USDA NRCS, 2012. *Field Book for Describing and Sampling Soils*. 3 ed. Washington, DC: USDA Natural Resources Conservation Service.

USDA NRCS, 2020. *Guide to Pasture Condition Scoring*. II ed. Washington, D.C.: United States Department of Agriculture, Natural Resources Conservation Service.

USDA NRCS, 2020. *RANGELAND VEGETATION MEASUREMENTS*. [Online] Available at: <u>https://www.nrcs.usda.gov/plantmaterials/idpmctn13602.pdf</u> [Accessed 8 3 2024].

USDA NRCS, 2022. *National Range and Pasture Handbook*. Washington, D.C.: United States Department of Agriculture, Natural Resources Conservation Service.

USDA NRCS, 2022. Rangeland Ecohyrology (subpart G). In: *National Range and Pasture Handbook*. Washington, DC: USDA Natural Resources Conservation Service.

USDA NRCS, 2022. Subpart E – inventory, assessments, and monitoring for grazing lands. In: *National Range and Pasture Handbook*. Washington D.C.: United States Department of Agriculture, Natural Resources Conservation Service.

USDA NRCS, 2023. *National resources inventory grazing land on-site data collection Handbook of instructions.* Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service.

USDI BLM, 2017. *Proper Functioning Condition for Lotic Areas.* Washington, DC: USDI Bureau of Land Management.

Wallace, L. L., 1987. Effects of clipping and soil compaction on growth, morphology and mycorrhizal colonization of Schizachyrium scoparium, a C 4 bunchgrass. *Oecologia*, Volume 72, pp. 423-428.

Wardynski, F., 2013. *Beef produces should strive to maintain proper levels of legumes in their forage stands.* [Online]

Available at:

https://www.canr.msu.edu/news/beef produces should strive to maintain proper levels of legumes in th eir\_f

[Accessed 16 2 2024].

70 TN 190 RP 4 (November 2024)

Warren, S. D., Nevill, M. B., Blackburn , W. H. & Garza, N. E., 1986. Soil Response to Trampling Under Intensive Rotation Grazing. *Soil Science Society of America Journal*, 50(5), pp. 1336-1341.

Webb, R. H., Wilshire, H. G. & Henry, M. A., 1983. Natural Recovery of Soils and Vegetation Following Human Disturbance. In: R. H. Webb & H. G. Wilshire, eds. *Environmental Effects of Off-Road Vehicles. Springer Series on Environmental Management.*. New York, NY: Springer.

Wei, H. et al., 2009. A new splash and sheet erosion equation for rangelands. *Soil Science Society America Journal*, Volume 73, pp. 1386-1392.

Weltz, M. A., Kidwell, M. R. & Fox, H. D., 1998. Influence of abiotic and biotic factors in measuring and modeling soil erosion on rangelands: State of knowledge. Soil Erosion on Rangelands. *Journal of Range Management,* Volume 52, pp. 482-495.

Weltz, M. A. & Spaeth, K. E., 2012. Estimating effects of targeted conservation on nonfederal. *Rangelands,* Volume 34, pp. 34-40.

Whittaker, R. H., 1975. Communities and Ecosystems. 2nd ed. New York: MacMillan Publishing Co..

Wilcox, B. P. & Wood, M. K., 1989. Factors influencing interrill erosion from semiarid slopes in New Mexico. *Rangeland Ecology & Management/Journal of Range Management Archives*, 42(1), pp. 66-70.

Willatt, S. T. & Pullar, D. M., 1984. Changes in soil physical properties under grazed pastures. *Australian Journal of Soil Research*, 22(3), pp. 343-348.

Wood, J. C. & Wood, M. K., 1988. Infiltration and water quality on range sites at fort Stanton, New Mexico 1. *JAWRA Journal of the American Water Resources Association*, 24(2), pp. 317-323.

Wood, M. K. & Blackburn, W. H., 1981. Grazing systems: their influence on infiltration rates. *Journal of Range Management*, Volume 34, pp. 331-335.